

JIM 101: CALCULUS Complex Numbers & Functions

Kami Memimpin We Lead

WEBEX 2

5/10/2019 2.00 PM-3.00 PM

COURSE INSTRUCTOR: DR. MOHD. ASYRAF MANSOR

asyrafman@usm.my

Ext: 5906

WEBEX CLASS 2 AGENDA

02 Complex Numbers

- ✓ Equality of Complex Numbers
- ✓ Argand Diagram
- ✓ Modulus and Argument
- ✓ Polar Form of a Complex Number
- ✓ De Moivre's Theorem

03 Functions

- ✓ What is a function?
- ✓ Notation
- ✓ Domain and Range
- ✓ Inverse Function

Equality of Complex Numbers

Let $a, b, c, d \in R$ and $i = \sqrt{-1}$. Any two complex numbers, a + bi and c + di are considered equal if and if both real part and the imaginary part are equal that is:

a + bi = c + di

Solve the equation (x + yi)(3 - i) = 1 + 2iwhere x and y are real numbers.

ARGAND DIAGRAM

If **Real numbers** can be represented by points on straight line, then how do we represent **Complex numbers**?

Complex numbers can be shown geometrically on an Argand diagram.

- x-axis (Real axis)
- y-axis (Imaginary axis)

ARGAND DIAGRAM

Just as x-y axes were a useful way to visualise coordinates, an Argand diagram allows us to visualise complex numbers.

Very simply, a complex number x + iy can be plotted as a point (x, y). The "x" axis is therefore the "**real axis**" and the "y" axis therefore the "**imaginary axis**". The plane (2D space) formed by the axes is known as the "**complex plane**" or "z plane".

MODULUS

Magnitude or Modulus of z

Let z = x + yi be a complex number. The magnitude or modulus of z, denoted by |z| is defined as the distance from the origin to the point (x, y). In other words:

$$|z| = \sqrt{x^2 + y^2}$$

ARGUMENT

		Argument	
Quadrant (shaded)	Argand diagram sketch	Information	Formula
1	b d a	a is positive b is positive argument is positive	$\theta = \tan^{-1}\left(\frac{b}{a}\right)$
2	a b b b b b b b b b b b b b b b b b b b	a is negative b is positive argument is positive	$\theta = \pi + \tan^{-1}\left(\frac{b}{a}\right)$
3		a is negative b is negative argument is negative	$\theta = -\pi + \tan^{-1}\left(\frac{b}{a}\right)$
4	b b z	a is positive b is negative argument is negative	$\theta = \tan^{-1}\left(\frac{b}{a}\right)$

Polar Form of a Complex Number

Complex Numbers In Polar Form

Find the **modulus** and **argument** of the following complex number. Then, sketch the argand diagram.

z = 2 + i

Find the **modulus** and **argument** of the following complex number. Then, sketch the argand diagram.

z = 5 - 4i

Find the **modulus** and **argument** of the following complex number. Then, sketch the argand diagram.

z = -4 + 2i

Find the **modulus** and **argument** of the following complex number. Then, sketch the argand diagram.

$$z = -1 - \sqrt{3}i$$

Express the following in the **polar form**. Then, sketch the argand diagram.

z = 6 + 8i

Express the following in the **polar form**. Then, sketch the argand diagram.

$$z = \frac{-1+5i}{2+3i}$$

De Moivre's Theorem

What is the fastest way to raise a Complex number to a specific power?

De Moivre's Theorem Let $z = r(\cos \theta + i \sin \theta)$ and let n be a positive integer. Then: $z^n = [r(\cos \theta + i \sin \theta)]^n$ $= r^n(\cos n\theta + i \sin n\theta)$

Find the value of $[2(\cos 60^{\circ} + i \sin 60^{\circ})]^2$

Use DeMoivre's Theorem to find the 5th power of the complex number

 $z = 2(\cos 24^\circ + i \sin 24^\circ)$. Express the answer in the form a + bi.

Definition of a Function

A <u>function</u> is a relation in which each element of the domain is paired with <u>exactly one</u> element of the range. Another way of saying it is that there is <u>one and only one</u> output (y) with each input (x).

Notation of a Function

y = f(x)

OutputName ofFunction

Kami Memimpin We Lead

Input

Domain and Range of a Function

 A function is a set of ordered pairs of numbers (x, y) such that no x-values are repeated.

What are the domain and range of a function?

- The Domain is the set of all possible x-values in a function.
- The Range is the set of all possible y-values in a function.

Given f(x) = 8x - 1, find: (a) f(2)(b) f(1 - x)(c) the value of *k* if f(k) = 3

Find the domain and range of f(x) = 2x + 5 by using the graphical method.

Find the domain and range of f(x) = |x + 1| by using the graphical method.

Find the domain and range of $f(x) = \frac{5}{x^2}$ by using the graphical method.

Find the domain and range of $f(x) = x^2 + 2$.

SOLUTION:

Since y defined for all values of x. Thus, the domain of the function:

 $D_f = (-\infty, \infty).$

In order to find the range, we need to find the value of x.

$$x^{2} + 2 = y$$
$$x^{2} = y - 2$$
$$x = \pm \sqrt{y - 2}$$

x is defined for values of y such that $\sqrt{y-2} \ge 0$, that is, $y \ge 2$. Hence, the range of the function:

$$R_f = [2,\infty)$$

Inverse Function

If *f* is one-to-one, then *f*⁻¹ exists.

The domain of f is the range of f^{-1} , and the range of f is the domain of f^{-1} .

If the point (a,b) is on the graph of f, then the point (b,a) is on the graph of f^{-1} , so the graphs of f and f^{-1} are reflections of each other across the line y = x.

Find the inverse function of
$$f(x) = \frac{1}{x-3}$$

Extra Exercises

1. Represent the following complex number on separate **Argand Diagrams**. Find the **modulus** and **argument** of the following complex number. Hence, express in **polar form**.

(a)
$$z_1 = 4 + 3i$$

(b) $z_2 = -12 + 5i$
(c) $z_3 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$
(d) $z_4 = -8 - 3i$
(e) $z_5 = 3i$
(f) $z_6 = \frac{6+8i}{3-4i}$

Extra Exercises

2. Find the domain and range of the following functions.

(a)
$$f(x) = x^2 + 4x + 3$$

(b)
$$f(x) = \frac{6}{x+2}$$

(c)
$$f(x) = \sqrt{x-6}$$

(d) $f(x) = |x-3|$

(e)
$$f(x) = -x^3 + 5$$

ANNOUNCEMENT

- Kindly send me an email via <u>asyrafman@usm.my</u> for any inquires or to set up an appointment for JIM319 consultation.
- Assignment 1 will be available to access from eportal on 11th October 2019.
- Do watch the pre-recorded e-kuliah or videos before attending WEBEX class for a better understanding.

NEXT WEBEX CLASS

LIMITS AND CONTINUITY

Kami Memimpin We Lead

THANK YOU SO MUCH

 \land \land