
MS414 Fuzzy Set Theory Lecture 2019/2020

Algebraic Operations with Fuzzy Numbers

Definition 1. A fuzzy number M̃ is a convex normalized fuzzy set M̃ of the real line R such
that

(1) It exists exactly one x0 ∈ R with µM̃(x0) = 1 (x0 is called the mean value of M).

(2) µM̃(x) is piecewise continuous.

Definition 2. A fuzzy number M̃ is called positive (negative) if its membership function is such
that µM̃(x) = 0,∀x < 0(∀x > 0).

Example 1. The following fuzzy sets are fuzzy numbers:

approximately 5 = {(3, .2), (4, .6), (5, 1), (6, .7), (7, .1)}
approximately 10 = {(8, .3), (9, .7), (10, 1), (11, .7), (12, .3)}

But {(3, .8), (4, 1), (5, I), (6, .7)} is not a fuzzy number because µ(4) and also µ(5) = 1

Definition 3. A binary operation * in R is called increasing (decreasing) if

for x1 > y1 and x2 > y2,

x1 ∗ x2 > y1 ∗ y2(x1 ∗ x2 < y1 ∗ y2)

Example 2.

f(x, y) = x+ y is an increasing operation.

f(x, y) = x · y is an increasing operation on R+.

f(x, y) = −(x+ y) is a decreasing operation.

If the normal algebraic operations +,−, . , : are extended to operations on fuzzy numbers, they
shall be denoted by ⊕,	,�,.

Theorem 1. If M̃ and Ñ are fuzzy numbers whose membership functions are continuous and
surjective from R to [0, 1] and ∗ is a continuous increasing (decreasing) binary operation, then

M̃ ~ Ñ is a fuzzy number whose membership function is continuous and surjective from R to
[0, 1].

Dubois and Prade present procedures to determine the membership functions µM̃�Ñ on the basis
of µM̃ and µÑ .



Theorem 2. If M̃, Ñ ∈ F (R) with µÑ(x) and µM̃(x) continuous membership functions, then
by application of the extension principle for the binary operation ∗ : R⊗R→ R the membership

function of the fuzzy number M̃ ~ Ñ is given by

µM̃~Ñ(z) = sup
z=x∗y

min{µM̃(x), µÑ(y)}

Properties of the extended operation ~

Remark 1.

1.For any commutative operation ∗, the extended operation ~ is also commutative.

2.For any associative operation ∗, the extended operation ~ is also associative.

Special Extended Operations

For unary operations f : X → Y,X = X1 (see definitions 5-1), the extension principle reduces

for all M̃ ∈ F (R) to
µf(M̃)(z) = sup

x∈f−1(z)

µM̃(x)

Example 3. Consider the following examples.

(1) Forf(x) = −x , the opposite of a fuzzy number M̃ is given by −M̃ = {(x, µ−M̃(x))|x ∈
X}, where µ−M̃(x) = µM̃(−x).

(2) If f(x) = 1
x
, then the inverse of a fuzzy number M̃ is given by M̃−1 = {(x, µ−1

M̃
(x))|x ∈

X}, where µ−1
M̃

= µM̃( 1
x
).

(3) For λ ∈ R \ {0} and f(x) = λ · x, then the scalar multiplication of a fuzzynumber is
given by λM = {(x, µλM̃(x))|x ∈ X}, where µλM̃(x) = µM̃(λ · x).

In the following, we shall apply the extension principle to binary operations. A generalization
to n-ary operations is straightforward.

Extended Addition. Since addition is an increasing operation according to Theorem 1, we

get for the extended addition ⊕ of fuzzy numbers that f(Ñ , M̃) = Ñ ⊕ M̃, Ñ , M̃ ∈ F (R) is a

fuzzy number-that is, Ñ ⊕ M̃ ∈ F (R).

The properties of ⊕ are as follows:

(1) 	(M̃ ⊕ Ñ) = (	M̃)⊕ (	Ñ).
(2) ⊕ is commutative.
(3) ⊕ is associative.

(4) 0 ∈ R ⊆ F (R) is the neutral element for ⊕, that is,M̃ ⊕ 0 = M̃, ∀M̃ ∈ F (R).

(5) For ⊕ there does not exist an inverse element, that is, ∀M̃ ∈ F (R) \ R : M̃ ⊕ (	M̃) 6=
0 ∈ R.



Extended Product. Multiplication is an increasing operation on R+ and a decreasing op-
eration on R−. Hence, according to theorem 5-1, the product of positive fuzzy numbers or of

negative fuzzy numbers results in a positive fuzzy number. Let M̃ be a positive and Ñ a negative

fuzzy number. Then 	M̃ is also negative and M̃ � Ñ = 	(	M̃ � Ñ) results in a negative fuzzy
number.

The properties of � are as follows:

(1) (	M̃)� Ñ = 	(M̃ � Ñ).
(2) � is commutative.
(3) � is associative.

(4) M̃�1 = M̃, 1 ∈ R ⊆ F (R) is the neutral element for �, that is, M̃�1 = M̃, ∀M̃ ∈ F (R).

(5) For � there does not exist an inverse element, that is, ∀M̃ ∈ F (R) \ R : M̃ � M̃−1 6= 1.

Theorem 3. If M̃ is either a positive or a negative fuzzy number and Ñ and P̃ are both either
positive or negative fuzzy numbers, then

M̃ � (Ñ ⊕ P̃ ) = (M̃ � Ñ)⊕ (M̃ � P̃ )

Extended Subtraction. Subtraction is neither an increasing nor a decreasing operation.

Therefore theorem 5-1 is not immediately applicable. The operation M̃ 	 Ñ can, however, al-

ways be written as M̃ 	 Ñ = M̃ ⊕ (	Ñ).

Applying the extension principle [Dubois and Prade 1979] yields

µM̃	Ñ(z) = sup
z=x−y

min(µM̃(x), µÑ(y)

= sup
z=x+y

min(µM̃(x), µÑ(−y))

= sup
z=x+y

min(µM̃(x), µ−Ñ(y)

Thus M̃ 	 Ñ is a fuzzy number whenever M̃ and Ñ are.

Extended Division. Division is also neither an increasing nor a decreasing operation. If M̃

and Ñ are strictly positive fuzzy numbers, however (that is, µM̃(x) = 0 and µÑ(x) = 0∀x ≤ 0),
we obtain in analogy to the extended subtraction

µM̃�Ñ(z) = sup
z=x/y

min(µM̃(x), µÑ(y))

= sup
z=xy

min

(
µM̃(x), µÑ

(
1

y

))
= sup

z=xy
min(µM̃(x), µ−1

Ñ
(y))

Ñ 1 is a positive fuzzy number. Hence theorem 5-1 can now be applied. The same is true if M̃

and Ñ are both strictly negative fuzzy numbers.

Example 4. Let M̃ = {(I, .3), (2, 1), (3, .4)}, Ñ = {(2, .7), (3, I), (4, .2)}

Then, M̃ � Ñ = {(2, .3), (3, .3), (4, .7), (6, 1), (8, .2), (9, .4), (12, .2)}



Extended Operations for LR-Representation of Fuzzy Sets

Definition 4. A fuzzy number M̃ is of LR-type if there exist reference functions L (for left), R
(for right), and scalars α > 0, β > 0with

µM̃(x) =


L

(
m− x
α

)
for x ≤ m

R

(
x−m
β

)
for x ≥ m

m, called the mean value of M̃ it, is a real number, and α and β are called the left and right

spreads, respectively. Symbolically,M̃ it is denoted by (m,α, β)LR (Look at the internet how
does the L-R fuzzy number looks like!)

For L(z), different functions can be chosen. Dubois and Prade [1988a, p. 50] mention, for
instance, L(x) = max(0, 1 − x)p, L(x) = max(0, 1 − xp) , with p > 0 and L(x) = e−x or

L(x) = e−x
2

. These examples already give an impression of the wide scope of L(z). One
problem, of course, is to find the appropriate function in a specific context.

Example 5. Let

L(x) =
1

1 + x2

R(x) =
1

2|x|
α = 2,β = 3, / = 5

Then

µM̃(x) =



L

(
5− x

2

)
=

1

1 +

(
5− x

2

) for x ≤ 5

R

(
x− 5

3

)
=

1

1 +

∣∣∣∣2(x− 5)

3

∣∣∣∣ for x ≥ 5

If m is not a real number but an interval [m,m], then the fuzzy set M̃ is not a fuzzy number but
a fuzzy interval. Accordingly, a fuzzy interval in LR representation can be defined as follows:

Definition 5. A fuzzy interval M̃ if is of LR-type if there exist shape functions L and R and

four parameters (m,m) ∈ R2 ∪ {−∞,+∞, α, β} and the membership function of M̃ is

µM̃(x) =


L

(
m− x
α

)
for x ≤ m

1 for m ≤ x ≤ m

R

(
x−m
β

)
for x ≥ m

The fuzzy interval is then denoted by

M̃ = (m,m,α, β)LR



This definition is very general and allows quantification of quite different types of information ;

for instance, if M̃ is supposed to be a real crisp number for m ∈ R,

M̃(m,m, 0, 0)LR, ∀L,∀R

If M̃ is a crisp interval,

M̃ = (a, b, 0, 0)LR,∀L,∀R

and if M̃ is a ”trapezoidal fuzzy number”, L(x) = R(x) = max(0, 1− x) is implied.

Theorem 4. Let M̃, Ñ be two fuzzy numbers of LR-type:

M̃ = (m,α, β)LR, Ñ = (n, γ, δ)LR

Then,

(1) (m,α, β)LR ⊕ (n, γ, δ)LR = (m+ n, α + γ, β + δ)LR.

(2) −(m,α, β)LR = (−m,β, α)LR.

(3) (m,α, β)LR 	 (n, γ, δ)LR = (m− n, α + γ, β + δ)LR

Example 6.

L(x) = R(x) =
1

1 + x2

M̃ = (1, .5, .8)LR

Ñ = (2, .6, .2)LR

M̃ ⊕ Ñ = (3, 1.1, 1)LR

Õ = (2, .6, .2)LR

�Õ = (−2, .2, .6)LR

M̃ � Õ = (−1, .7, 1.4)LR

Theorem 5. Let, M̃, Ñ be fuzzy numbers as in definition 5-3; then

(m,α, β)LR � (n, γ, δ)LR ≈ (mn,mγ + nα,mδ + nβ)LR

for M̃, Ñ positive;

(m,α, β)LR � (n, γ, δ)LR ≈ (mn, nα−mδ, nβ −mγ)LR

for Ñ positive, M̃ negative, and

(m,α, β)LR � (n, γ, δ)LR = (mn,−nβ −mδ, nα−mγ)LR

for M̃, Ñ negative.

The following example shows an application of the theorem.



Example 7. Let M̃ = (2, .2, .1)LR and Ñ(3, .1, .3)LR be fuzzy numbers of LR-type with reference
functions

L(z) = R(z) =

{
1 −1 ≤ z ≤ 1

0 else

If we are interested in the LR-representation of M̃ � Ñ , we prove the conditions of the previous
theorem and apply it. Thus, with

µM̃(x) =


L

(
2− x
.2

)
x ≤ 2

R

(
x− 2

.1

)
x ≥ 2

=

1 −1 ≤ 2− x
.2
≤ 1 and − 1 ≤ x− 2

.1
≤ 1

0 else

=

{
1 1.9 ≤ x ≤ 2.1

0 else

it follows that M̃ is positive.

µÑ(x) =


L

(
3− x
.1

)
x ≤ 3

R

(
x− 3

.3

)
x ≥ 3

=

{
1 2.9 ≤ x ≤ 3.1

0 else

shows that Ñ is positive.

Following the theorem for the case in which M̃ and Ñ are positive, we obtain

M̃ � Ñ ≈ (2 · 3, 2 · 0.1 + 3 · 0.2, 2 · 0.3 + 3 · 0.1)LR == (6, .8, .9)LR


