MS414 Fuzzy SET THEORY LECTURE 2019/2020

Algebraic Operations with Fuzzy Numbers

Definition 1. A fuzzy number M is a convex normalized fuzzy set M of the real line R such
that

(1) It exists exactly one zy € R with pug;(x9) = 1 (0 is called the mean value of M).

(2) pgz(x) is piecewise continuous.

Definition 2. A fuzzy number M is called positive (negative) if its membership function is such
that py;(x) = 0,Ve < 0(Ve > 0).

Example 1. The following fuzzy sets are fuzzy numbers:

approximately 5 = {(3,.2), (4, .6), (5,1), (6,.7),(7,.1)}
approximately 10 = {(8,.3),(9,.7), (10,1), (11,.7), (12,.3) }

But {(3,.8),(4,1),(5,1),(6,.7)} is not a fuzzy number because p(4) and also u(5) =1

Definition 3. A binary operation * in R is called increasing (decreasing) if
for xy >y, and x5 > yo,

Ty % To > Y1 * Ya(X1 * T2 < Yy * Yo)

Example 2.
f(xz,y) =z +vy is an increasing operation.
f(z,y) =z -y is an increasing operation on R+.
f(x,y) = —(z+y) is a decreasing operation.
If the normal algebraic operations +, —, ., : are extended to operations on fuzzy numbers, they

shall be denoted by &, 5, ®,.

Theorem 1. ]fM and N are fuzzy numbers whose membership functions are continuous and
surjective from R to [0,1] and * is a continuous increasing (decreasing) binary operation, then

M ® N is a fuzzy number whose membership function is continuous and surjective from R to
[0, 1].

Dubois and Prade present procedures to determine the membership functions gz 5 on the basis
of pzr and pug.



Theorem 2. If M,N € F(R) with pg(x) and pgp(x) continuous membership functions, then
by application of the extension principle for the binary operation x : RQR — R the membership
function of the fuzzy number M ® N s given by

Hiren(2) = sup min{ug(z), uy(y)}

Z=x*Y
Properties of the extended operation &
Remark 1.

1.For any commutative operation *, the extended operation ® is also commutative.

2.For any associative operation x, the extended operation ® is also associative.

Special Extended Operations

For unary operations f : X — Y, X = X (see definitions 5-1), the extension principle reduces
for all M € F(R) to

Mf(]\?j)(z): sup  pgz()
z€f~1(2)

Example 3. Consider the following examples.

(1) Forf(z) = —x , the opposite of a fuzzy number M is given by —M = {(x, p_gp(x))|r €
X}, where p57(x) = pgp(—2).

(2) If f(z) = 1, then the inverse of a fuzzy number M is given by M~ = {(x, p— ()] €
X}, where ,u% = pgp(L).

(3) For A € R\ {0} and f(z) = A -z, then the scalar multiplication of a fuzzynumber is
given by AM = {(z, u,77(v))|z € X}, where p,77(2) = pgr(A - ).

In the following, we shall apply the extension principle to binary operations. A generalization
to m-ary operations is straightforward.

Extended Addition. Since addition is an increasing operation according to Theorem 1, we
get for the extended addition @ of fuzzy numbers that f(N, M) N@®&M,N,M € F(R) is a
fuzzy number-that is, N ® M € F(R).

The properties of @ are as follows:

1) (M @ N) = (6M) & (SN).

2) @ is commutative.

3) @ is associative.

4) 0 € R C F(R) is the neutral element for @, that is Mea0=DMVM e F(R).

5) For @ there does not exist an inverse element, that is, VM € F(R) \ R : M @& (M) #

0eRR.
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Extended Product. Multiplication is an increasing operation on R* and a decreasing op-
eration on R™. Hence, according to theorem 5-1, the product of positive fuzzy numbers or of

negative fuzzy numbers  results in a positive fuzzy number. Let M be a positive and N a negative

fuzzy number. Then oM is also negative and MON = @(6M ®N ) results in a negative fuzzy
number.

The properties of © are as follows:

(eM)® N =6(M e N).
1S commutative.

(1)
(2) ©
(3) @ is associative.
(4) Mol=M,1eRC F(R) is the neutral element for ®, that is, M®l=MVM e F(R).
(5) For ® there does not exist an inverse element, that is, VM € F(R)\R: M & M~! # 1.

Theorem 3. If M is either a positive or a negative fuzzy number and N and P are both either
positive or negative fuzzy numbers, then

Mo(N®P)=(MoN)® (Mo P)

Extended Subtraction. Subtraction is neither an increasing nor a decreasing operation.
Therefore theorem 5-1 is not immediately applicable. The operation Mo N can, however, al-
ways be written as M © N = M & (ON).

Applying the extension principle [Dubois and Prade 1979] yields

Hiisn(2) = sup min(ug(z), py(y)

z=r—Yy

= sup min(uM(I)7 Nﬁ(_y))
z=x+y

= suE min(uﬂ(x),ﬂ,ﬁ(y)
z=x+y

Thus M & N is a fuzzy number whenever M and N are.

Extended Division. Division is also neither an increasing nor a decreasing operation. If M
and N are strictly positive fuzzy numbers, however (that is, pg7(z) = 0 and pg(z) = 0Vr < 0),
we obtain in analogy to the extended subtraction

tiion(2) = sup min(ug(z), py(y))

z=z/y

e CE0)

= sup min(u]\“/j@?); ,u;gl (y))

z=xy

N is a positive fuzzy number. Hence theorem 5-1 can now be applied. The same is true if M
and N are both strictly negative fuzzy numbers.

Example 4. Let M = {(I,.3),(2,1),(3,.4)}, N = {(2,.7),(3,1), (4,.2)}

Then, M © N = {(2,.3),(3,.3), (4,.7), (6,1), (8,.2), (9, 4), (12, .2)}



Extended Operations for LR-Representation of Fuzzy Sets

Definition 4. A fuzzy number M is of LR-type if there exist reference functions L (for left), R
(for right), and scalars a > 0, 5 > Owith

L(m—x) for z<m

«

pp(x) = R(x_m
B

m, called the mean value of M it, is a real number, and « and [ are called the left and right

spreads, respectively. Symbolically,M it is denoted by (m,«, 5)r (Look at the internet how
does the L-R fuzzy number looks like!)

) for >m

For L(z), different functions can be chosen. Dubois and Prade [1988a, p. 50] mention, for
instance, L(z) = max(0,1 — z)?, L(x) = max(0,1 — aP) |, with p > 0 and L(z) = e or
L(z) = e*" . These examples already give an impression of the wide scope of L(z). One
problem, of course, is to find the appropriate function in a specific context.

Example 5. Let

1
L(z)= ——
1

Then

pap(@) = _
R(x 5)2 ! for z>5

If m is not a real number but an interval [m,m], then the fuzzy set M is not a fuzzy number but
a fuzzy interval. Accordingly, a fuzzy interval in LR representation can be defined as follows:

Definition 5. A fuzzy interval M if is of LR-type if there exist shape functions L and R and
four parameters (m,m) € R? U {—o0, +00, a, 3} and the membership function of M is

L(m_x) for z<m
Q
pap(r) =41 for m<z<m
r—m
R for x>m
(7)o oz

The fuzzy interval is then denoted by

M = (m,m, o, B)Lr



This definition is very general and allows quantification of quite different types of information ;
for instance, if M is supposed to be a real crisp number for m € R,

—~

M(m, m, 0, O)LR, VL, VR

If M is a crisp interval,
M = (a,b,0,0) 15, VL, VR

and if M is a ”trapezoidal fuzzy number”, L(z) = R(z) = max(0,1 — z) is implied.

Theorem 4. Let ]\7, N be two fuzzy numbers of LR-type:
M = (m7 «, 5)LRv N = (na Y5 5)LR

Then,
(1) (m,a,B)Lr® (n,7,0)Lr = (M +n,a+7, 8+ 9d)Lr.

(2) _(m’ a7B)LR - (_m767 a)LR-

(3) (m> «, 5)LR S (n7 e 5)LR = (m —n,o + 7, 6 + 5)LR

Example 6.
L(x) = R() = —
1+ 22
M =(1,5,.8)r
N =(2,.6,.2).r
Ma& N =(3,1.1,1) 5
O =(2.6 2)Lr
00 = (-2,.2, 6)'F
MoO=(-1,714).x

Theorem 5. Let, M , N be fuzzy numbers as in definition 5-3; then

(m, o, B)Lr © (n,7,0)Lr = (mn, my + na,md + nf)Lr
for M, N positive;

(m,a, B)Lr @ (n,7,0)Lr = (mn,na — md, nf5 — m~y) g
for N positive, M negative, and

(m, o, B)Lr ® (n,7,0)Lr = (mn, —nB — mdé,na — m~y) g
for M, N negative.

The following example shows an application of the theorem.



Example 7. Let M = (2,.2,.1) g and N(3, .1,.3)Lr be fuzzy numbers of LR-type with reference
functions

1 —-1<2z2<1
0 else

If we are interested in the LR-representation of M®N , we prove the conditions of the previous
theorem and apply it. Thus, with

L<2_x Tz <2

.2
Nﬁ(a:) = r—9
R ( > x> 2
1
B —1§2_—2x§1 and —1§x_12§1
0 else . .
1 19<x <21
o else
it follows that M is positive.
() = _
R (m 3) Tz >3
3
N 29<z<31
o else

shows that N is positive.

Following the theorem for the case in which M and N are positive, we obtain

MON=(2-3,2-0143-02,2-03+3-0.1),, == (6,.8,.9), 5



