

IBK412: Environmental Bioprocess Technology

By Muaz bin Mohd Zaini Makhtar

Email: <u>muazzaini@usm.my</u> A NNEX Building, RoomA401 What moment you have the smile in your face, but honestly you don't like that photo at all? Mind to share what was the situation and why it happened?

Go to www.menti.com and use the code 65 75 593

Moment where I missed my smile.. huhu

Moment where I missed my smile.. huhu

WASTEWATER

DOMESTIC WASTE
INDUSTRIAL WASTE

والمالي المالية المناجع والمناجع والمالي والمالية والمالية والمناجع والمراجع المالي والمالية والمراجع والمراجع

ASSIGNMENT (Due Date 5 NOv 5am)

Part A

- State the percentage (%) composition inside the sludge for these following elements:
 - Macronutrient
 - Micronutrient
 - Trace element

*Need to mention your type of wastewater and cite the source of your finding (Endnote/M endelley).

Part B

State the recent function of sludge from WWTP:

- Brick
- soil conditioner / fertilizer
- Soil reclamation

Part C

- Two other relevant application
- *cite the source of your finding (Endnote/Mendelley)

Allocation Marks (52/52 marks ~ 100 %)

Part A

- Table for different type of wastewater (state the source of the sludge):
 - macro (4 marks), micronutrient (4 marks) and trace element(4 marks)

Part B (12 marks x 3 application = 36 marks)

- Well elaborate the application in each sludge application(2)
- the techniques used ; mechanism (6 marks)
- the impacts toward yield/aims/ the efficiency (4 marks).

Part C

• The 'others' application (2 marks)

**Usage of endnote/ mendelley (2 marks)

REFRESH OF WASTEWATER TREATMENT

and the first of the station of the first of

Conventional WW Treatment

Primary Sedimentation

أ فأنز م والله

 Purpose: to remove suspended solids (smaller than grit, and less harmful) Typical efficiency - 67% TSS removal – 33% BOD removal Design parameters - overflow rate - weir loading rate detention time

وتواليهم أيارك فأراب الطنيب وتعاليهم أياركنا ألبارك أيترك وتطليهم والمراجع والمراجع أيارك فأراب

Suspended Growth Systems Activated Sludge! Air Secondary Aeration Tank Sedimentation \triangleleft وتواليهم أيارك فأراب الطنيب والتركي وتواليهم أيراك فأراب الطني وماته وتواليهم أيراك فأر الأطلاب والل

Sludge Disposal

 Thickening - gravity, flotation Digestion - aerobic, anaerobic Mechanical Dewatering - Vacuum filtration, centrifugation, pressure filtr. Disposal - land application, burial, incineration

وتوالهت أيارك فأماتها والنبير وبالهرية التأرك أيترك فأماتها والتربي والارتفاقات أيترك فأكته والتربي والار

Sludge Characteristic

Source	Typical Concentration, percent
Primary sludge, without thickening	2 - 7
Waste activated sludge	0.5 - 1.5
Waste trickling filter sludge	1-5
Digested sludge	4 - 10
Dewatered sludge	12 - 50

. Alleh

Value of Sludge Composition

Constituent	kg/ton	Gross value \$A/ton	
Protein Fat	320 150	130 60	
N	50 15	25	
B ₁₂	0.0025	20	
Energy	30	70-150	
Metals	3	<u>35</u> \$300	
and the second second	stated in	fell and have all a	at and in the ast

أأزياواك

Sludge Digestion: Anaerobic

Sludge drying bed: preparation

Filling the drying bed with sludge

Starting the drying process

Waste is Wealth

والأر

Advance Method in wastewater Treatment

- In 1910, a botany professor from University of Durham, UK, had proposed the idea of ca talytic activity and conversion of microbes ca n generate electricity.
- Then early in 1990s Allen and Bennetto reported that fuel cell became more attractive and the investigation on MFCs began to start

A microbe wanders a muddy world in search of food.

A mysterious forest in the distance...

A fiber forest full of nutrients!

A glorious feast to power up!

Zap! An electrical charge bursts to a nearby fiber!

With the microbe's ability to replicate, one becomes two.

Two becomes four. Four becomes eight. Soon there are millions!

Simple foods are eaten first. Now only complex, inedible nutrients remain

A fungi clan arrives. Are they friends or foes?

The fungi munch up the complex foods, freeing the simple nutrients inside.

Symbiosis saves the day!

A shocking development! The microbes grow electron-shuttling nanowires!

Even distant microbes can discharge to a fiber by linking nanowires!

A connected community flourishes – the power of working together!
Theoretical calculation

Let say IWK Sdn Bhd produces 500 L/d AD, 600 mg/L of COD, 14.7 kJ/g –COD (basis waste water)

The power would be:

٠

$$P = \left(600 \ \frac{mg \ COD}{L}\right) \left(\frac{500 \ L}{d}\right) \left(\frac{g}{10^3 mg}\right) \left(\frac{14.7}{g - COD}\right) \left(\frac{1kWh}{3600 kJ}\right) \left(\frac{1d}{24h}\right)$$
$$= 0.051 \ kW$$

Let say tariff Tenaga Nasional Berhad RM0.44/kW-h, how much IWK Sdn Bhd save the c ost a year by having power at 0.51 kW/day?

$$Value = 0.051 \, kW \, \left(\frac{RM0.44}{kWh}\right) \left(\frac{24 \times 365 \, h}{yr}\right)$$
$$= RM196.57$$

**these calculation all assume 100 % energy recovery, not reasonable. As a goal, it is hope t o recover 20 – 30 % of the energy.

How to visualize the power we have instead you see the small amount of RM we managed to save?

We try to show in term of the application.

A wastewater company light their waste pond during night 7 pm to 7 am (12 h) using 3 W LED lamp. So how many LED lamp can be lighted?

 $0.051 \, kW = 51 \, Watt$ 1 LED lamp = 3 Watt LED can be lighted up = $\left(\frac{51Watt}{3 \, Watt}\right)$ = 17 LED throughout a year!

Waste Stabilization Lagoons

A carefully designed structure constructed to contain and to facilitate the operation and control of a complex process of treating or stabilizing wastewater.

Typical Lagoon System

Water used to carry waste products aw ay from homes, schools, commercial e stablishments, and industrial enterprise

S.

TREATMENT PROCESS

Waste Stabilization Lagoons "Treatment" Process

Natural Process

Same Process Which Occurs in a Natural P ond or Lake

Under Controlled Conditions

Waste Stabilization Lagoons

Natural Process

Same as Mechanical Plants

Carefully Designed and Constructed

Must Be Operated Properly

Must Be Understood

"The Process" Involves:

Physical Processes

Chemical Processes and Biological Processes

Physical Processes

Evaporation

Seepage

SOLIDS

Gas Exchange

Sedimentation

U.V. Radiation

Chemical Processes

Inorganic Activity

Precipitation Formation

BACTERIA

<u>Aerobic</u>

Bacteria that can use only oxygen that is "free" o r not chemically combined.

Anaerobic

Bacteria that can live in the absence of "free " oxygen.

Facultative

Bacteria that use either "free" or combined oxygen.

Zones in a Lagoon

AEROBIC

FACULTATIVE

ANAEROBIC

Zonal Relationships in a Lagoon

Zonal Differences

Environments

Bacteria

Activities

Sedimentation

Stabilization

Not All Of the Settled Solids Will Be Broken Down.

The Sludge Layer Will Increas e Slowly Over the Life of the L agoon

Bacteria Use Soluble Organics

Influent

Anaerobic Zone

Respiration

RESIPRATION

$CH_2O + O_2 \implies CO_2 + H_2O$

FACULTATIVE ZONE

Organisms Utilize Dissolved Oxygen or Combined Oxygen

Adapt to Changing Conditions

Continue Decomposition During Changing Conditions

Zonal Relationships in a Lagoon

Importance of Sufficie nt Oxygen

Efficient Treatment

Preventing Odors

ABSORPTION from ATMOSHERE

PHOTOSYNTHESIS

A Process in which **PLANTS** Utilize Sunlight and Chlorophyll to Convert **Carbon Dioxide** and Inorganic **Substances** to OXYGEN and **Additional Plant Material**

At Lagoon D.O. of 2.0 mg/L Temperature Permitting 8.0 mg/L Each 60 Pounds of Algae Produce 100 pounds Oxygen

Zonal Relationships in a Lagoon

ACTIVITY IN FACULTATIVE PONDS

ACTIVITY IN FACULTATIVE LAGOONS

FACTORS THAT AFFECT THE TRE ATMENT PROCESS

Influence of Wind

Adds Oxygen

Increases Mixing

Must Be Controlled

By Minimizing Accumulations of Material On, In, or Around the Lagoon

FACTORS THAT AFFECT THE TRE ATMENT PROCESS

Influence of Light

Photosynthesis

Disinfection

Must Be Controlled

By Minimizing Accumulations of Material On, In, or Around the Lagoon
FACTORS THAT AFFECT THE TRE **ATMENT PROCESS**

Influence of Temperature

 O_2

Rate of **Bacterial Activity**

Aerobic Facultative

Anaerobic

Growth of Algae

D.O. Saturation

Must Be Considered

FACTORS THAT AFFECT THE TRE ATMENT PROCESS

SEASONAL VARIATIONS

Summer To Fall

SEASONAL VARIATIONS

Winter To Early Spring

SEASONAL VARIATIONS

Spring and Fall

Transition Periods

Optimum for Discharging

Within Permit Limits High Stream Flows - Dilution High D.O. - Lagoon and Receiving Stream Minimal Human Contact

ADVANTAGES of LAGOON SYSTEMS

Economical to Construct & Operate.
Low Monitoring & Control Requirements.
Rapid Recovery from "Shock" Loads.
Low Energy & Chemical Usage.
Low Mechanical Failure.

6. Minimal Sludge Disposal.

7. Long Life.

DISADVANTAGES of LAGOON SYSTEMS

Large Land Usage.
Low Control Options.

- 3. Operations Dependant on Climate.
 - 4. Often High Suspended Solids.

5. Seasonal Odors.

- 6. Possible Ground Water Contamination.
 - 7. Not Good In High Loading Situations.

RESULTS of PROCESS

Public Health Protected Pathogens Removed

Environment Protected Characteristics of Wastewater Changed End Products Stable

Process Itself Is Not Offensive

Process Is In Balance

Properly Designed Facility

Process Is Controlled

System Is Maintained

Waste Stabilization Lagoons

A carefully <u>designed structure</u> constructed to contain and to facilitate the operation and control of a complex process of treating or stabilizing wastewater. One Very Important Tool of Design and Operation Is The Ability and Use of Series or Parallel Flow Through the System

Typical Lagoon System

SERIES OPERATION

Typical Lagoon System

Winter Operation

Amount Applied to the Treatment Process

Related to the SIZE of the Syste For Lagoons ^m Surface Area of the System

Amount Applied to the Treatment Process

Population Loading

Hydraulic Loading

Organic Loading

Number of Persons per Acre

Population Served (persons) Area of Lagoon (Acres)

<u>General</u> 50 to 500 Persons per Acre

Michigan 100 Persons per Acre

VOLUME of Wastewater to be Treated

Flow Rate

Gallons per Day (gpd) OR Million Gallons per Day (MGD)

Inches per Day

Influent Rate (gallons per day)

=

Pond Volume (gallons per inch)

- 1. A lagoon have 350 m long, 230 m width, and operating depth 5 m.
 - Find surface area of median depth

350 m x 230 m = 80,500 m₂

• Calculate operating volume in m3

80,500 m₂ x 5 m = 402,500 m₃

convert into litre (1m3 = 1000 L) so become 402,500,000 L

• Calculate litre per metre of depth

402,500,000 L / 5 m = 80,500,000 L/m

• How many metres would the water drop if 2.35x10^3 m3 were discharged?

2350 m3 -> 2,350,000 L

2,350,000 L / (80,500,000 L/m) =0.291 m

- 1. A lagoon have 350 m long, 230 m width, and operating depth 5 m.
 - Calculate litre per metre of depth

402,500,000 L / 5 m = 80,500,000 L/m

How many metres would the water drop if 2.35x10^3 m3 were discharged?
2350 m3 -> 2,350,000 L

2,350,000 L / (80,500,000 L/m) =0.291 m