

IBK412: ENVIRONMENTAL BIOPROCESS TECHNOLOGY ASSIGNMENT 2 (RECOVERY OF USEFUL COMPOUND IN WASTEWATER)

STUDENT NAME: NUR ARDINI NABILAH BINTI MAT ZAID

MATRIC NUMBER: 137632

LECTURER'S NAME: DR MUAZ MOHD ZAINI MAKHTAR

Simplify the given source following these criteria:

1. Introduction on why need to recover the metal in wastewater? Justify.

Water that contains metal can be toxic to human beings and environment. Metals are generally not able to be degraded biologically, can be absorbed through the organism circulatory system and stay in the tissue networks leading to multiple illness. Next, recovery of the metals from wastewater which has a high value in the market can help the wastewater treatment process to be advantageous in terms of the overall cost while still being environmentally friendly and feasible.

2. State at least 10 common metals that being recovered (include their concentration (mg/L) and source of the wastewater). *<u>put in table</u>

Refer Table 1.0

Name	Sy mb ol	Price (USD /kg)	MTP (Concen tration, mg/L)	Road wash (Concen tration, mg/L)	Tannery (Concen tration, mg/L)	Mining (Concen tration, mg/L)	Battery factory (Concen tration, mg/L)	Copper smelting (Concen tration, mg/L)	Acid mine drainage (Concen tration, mg/L)	Electrop lating industry (Concen tration, mg/L)	Metal finishing industry (Concen tration, mg/L)	An acidic industri al effluent (Concen tration, mg/L)
Alumi num	Al	1.85		0.467- 26.1		0.161	0.2-7.3		115.2			
Cadm ium	Cd	1.87	0-0.0033		0.056	0.004	0.02-0.12	76.05	1.9			
Calciu m	Ca	110			255	548	83-255					50
Chro mium	Cr	8.8	0.04-0.56	0.004- 0.107	391		<0.0044- 0.08	2.3	0.2	0.71	< 0.05	<5
Coppe r	Cu	6.72	0.079- 0.58	0.0111- 0.177		0.244	<0.033- 0.38	164.48	168	0.97	2.53-6.97	<5
Iron	Fe	0.2	0.48-3.9	2.59-26.8	4.4	0.033	0.02-20	88	2830	618		8000
Lead	Pb	2.09	0-0.039	<0.018- 0.053	0.872		4.0-13	4.6		0.46		
Magn esium	Mg	5.84			268	29.52	15-26		56			800
Zinc	Zn	2.14	0.026- 0.75	0.105- 1.56	0.684	0.023	0.6-17	7.33	2.33	1.40	0.08	16.84
Mang anese	Mn	2.2	0.067- 1.16		0.396		0.04-0.6					

Table 1.0: Concentration of different types of metals in common wastewaters (mg/L)

3. How much Water Environment Research foundation (WERF) recorded the amount they could obtain in dolar, \$/ year? (How much the basis per day of the wastewater volume?)

The Water Environment Research Foundation (WERF) stated that the amount they could obtain is estimated to be 8849-33,904,664 per year from a 10 MGD or roughly 37,854 m³/day flow of waste production.

4. There are three categories (physical, chemical, biological) for the metal recovery. State their common methods used. *<u>put in table.</u>

Category	Example of methods		
Physical	• Membrane filtration (microfiltration, ultrafiltration,		
	nanofiltration, reverse osmosis)		
	Electrodialysis		
	• Ion exchange		
	Adsorption		
Chemical	• Chemical precipitation (sulfide precipitation, chelation		
	precipitation)		
	Electrocoagulation		
	Electroflotation		
Biological	Bisorption		
	Bioremediation (phytoremediation)		

Table 2.0: Categories of metal recovery methods

5. The new technology to recovery metal is using bioelectrochemical system (BESs). What is the definition of this technique?

A technique that is used the concept of oxidation and reduction reactions in a reactor with the aid of microorganisms. Wastewater is oxidized by microbes that are presented in the anode chamber, producing a current that is detected by the cathode chamber and is then used for production of electricity. Other than that, the electrons can be used for reduction of water or oxidization of chemical compounds.

6. State three (3) researchers' findings using these five (5) mechanisms involved in (*put the photo of the system too):

Eg:

Method used	Findings	Ref
Without external energy using	- 99.89 \pm 0.00% gold Au (III) ions in the	Choi and
two-chambered MFC types	catholyte with a maximum power	Hu (2013)
BES	production of 6.58 W/m2 at 25 h	
	- $99.91 \pm 0.00\%$ of Ag(I) was recovered after	
	8 h operation with a maximum power	
	density 4.25 W/m2	
	Ag(I) recovery (removal rate of Ag(I)) was	Tao et al
	more rapid than that of Ag(I) thiosulfate	(2012)
	complex	
BES aerobic or anaerobic	Cu(II) recovery, with initial concentrations	Heijne et al
	ranged from 0 to as high as 6400 mg/L	(2010)
	(recovery efficiencies: 60.1% to 99.9%)	

a. The bioelectrochemical platform for metal recovery

Method used	Findings	Reference
BES for wastewater treatment	Bioelectrochemically assisted metal recovery processes can be grouped into four; direct reduction of metals on an abiotic cathode, metal recovery using abiotic cathodes supplemented by external power sources; metal conversion using biocathodes, metal conversion using biocathodes supplemented by external power sources.	Wang and Ren (2014)
	BES proposes a suitable way for both oxidation and reduction reaction and is efficient for integrated waste treatment and energy and resource recovery.	Li et al (2014); Logan and Rabaey (2012); Wang and Ren (2013)
	BES is advantageous in terms of the savings of aeration energy and sludge disposal, owing to its lower energy densities compared to other anaerobic processes.	Huggins et al (2013); McCarty et al (2011); Zhang and He (2013)

b. Direct metal recovery using abiotic cathodes

T.' 1	ο T	`	. 1		•	1	.1 1	1.
Highre L	$() \cdot 1$)irect	metal	recovery	110100	abiotic	cathodes	diagram
I Iguit I	.v. I	Jucci	motar	ICCOVCIY	using	autotic	camoucs	ulagram
0				~	0			0

Method used	Findings	Reference
Single-chamber reactors BESs	Removal of Cd and Zn through biosorption	Abourached
or MFCs	and sulfide precipitation with a higher power	et al (2014)
	output of 3.6 W/m^2	
	Maximum tolerable concentrations (MTCs) of	
	Cd and Zn were 200 mM and 400 mM	
	respectively.	
	Electrons directly by Se(IV) from bacteria	Catal et al
	enhanced for electricity generation.	(2009)
	99% Se(IV) recovered as the bright red	
	deposit of elemental Se.	
	Power density is inversely proportional to the	
	concentration of Se(IV) as it is affected by the	
	increased toxicity to microbes.	
Three-chamber system (two	Zn(II) in the cathode chamber was extracted	Fradler et al
chamber MFC and a strip	physically through supported liquid	(2014)
chamber adjacent the cathode	membrane and amassed in the strip chamber.	
chamber)		
	No chemical reactions happened to affect	
	Zn(II)	

T 11 40 04 1	1 1	•	1 1 1
Table / D' Studiec	on direct metal	recovery liging	abiotic cathodes
1 abic + 0.5 biu cos	On uncer metal		abiotic camoucs

c. Metal recovery using abiotic cathodes supplemented by external power sources

Figure 2.0: Metal recovery using abiotic cathodes supplemented by external power sources diagram

Table 4.0: Studies on metal recovery using abiotic cathodes supplemented by
external power sources diagram

Method used	Findings	Reference
Applying a higher voltage to	When an external voltage of 0.5-1.1 V	Qin et al
reduce the metal ions under	applied, Ni(II) was reduced to a percentage 51	(2012)
standard MFC/BES conditions	$\pm 4.6\%$ and 67 $\pm 5.3\%$ where the initial	
	concentration is 500 mg/L.	
	Cu(II), Pb(II), Cd(II) and Zn(II) that were	Modin et al
	presented in a mixed catholyte were	(2012)
	successively recovered.	
Successive removal of Cu ²⁺ ,	The value of energy recovery efficiency	Luo et al
Ni ²⁺ , and Fe ²⁺ from artificial	(calculated by dividing the ratio of energy	(2013)
acid mine drainage with	content of the H ₂ produced with the input	
simultaneous H ₂ production as	electrical energy) obtained was approximately	
1.0 V of power is added.	100%, suggesting that produced H_2 gas was	
	enough to offset the energy consumed during	
	the metal recovery.	

d. Metal conversion using bio-cathodes

Figure 3.0: Metal conversion using bio-cathodes diagram

Method used	Findings	Reference
Dissimilatory metal reducing	Mobile and toxic Cr(VI) can be reduced to	Daulton et
bacteria species that use metal	less mobile and less toxic Cr(III)	al (2007);
ions as terminal electron		Rahman et
acceptors		al (2007);
		Shugaba et
		al (2012);
		Tandukar
		et al
		(2009); Viti
		et al (2003)
	Se(VI) and Se(IV) can be microbially	Combs et al
	remediated to $Se(0)$ so that metal can be	(1996);
	precipitated.	Garbisu et
		al (1996);
		He and Yao
		(2011);
		Kashiwa et
		al (2000);
		Kessi et al
		(1999);
		Tomei et al
		(1995)
	Reduction of soluble Pd(II) to Pd(0)	Yates et al
	nanoparticles outside microbial cells with the	(2013)
	use of <i>Geobacter sulfurreducens</i> .	

Table 5.0: Studies on metal conversion using bio-cathodes

e. Metal conversion using bio-cathodes supplemented by external power sources*

Figure 4.0: Metal conversion using bio-cathodes supplemented by external power sources diagram

Table 6.0: Studies on metal conversion using bio-cathodes supplemented by	r
external power sources	

Method used	Findings	Reference
Applying lower redox potential	U(VI) reduced to U(IV) by Geobacter	Gregory
so that external power sources	sulfurreducens with a poised cathode potential	and Lovley
can be used on biocathode to	of -500 mV, which is a lot lower than	(2005)
facilitate reduction	electrochemical reduction of U(VI) at -900	
	mV.	
	Application of -300 mV potential leads to	Huang et al
	improvement in reduction rate of Cr(VI) and	(2011a)
	power production compared to condition	
	where control reactors are presented without	
	set potentials.	

7. State two example for each technique (Question 6 on 5 mechanism) their type of metal, reactor, reaction, redox potential, electron donor and electron acceptor.*<u>put</u><u>in table.</u>

Table 7.0: Details on techniques of bioelectrical metal platform techniques

Technique	Example 1	Example 2
Direct metal recovery using	Type of metal: Au(III)	Type of metal: V(V)
abiotic cathodes	Reactor: Two-chamber	Reactor: Two-chamber

Metal recovery using	Reaction: AuCl ₄ ⁻ + 3e ⁻ = Ai + 4Cl ⁻ Redox potential: 1.002 Electron donor: Acetate (1000 mg/L) Electron acceptor: Au ³⁺ (100-2000 mg/L), pH = 2 Type of metal: Ni(II)	Reaction: $VO_2^+ + 2H + e^- = VO^{2+} + H_2O$ Redox potential: 0.991 Electron donor: Glucose (812 mg/L, pH = 7) and sulfide (100 mg/L, pH = 7) Electron acceptor: V^{5+} (500 mg/L) pH = 2 Type of metal: Cu(II),
abiotic cathodes supplemented by external power sources	Reactor: Two chamber Reaction: $Ni^{2+} + 2e^- = Ni$ Redox potential: -0.25 Electron donor: Acetate (1000 mg/L) Electron acceptor: Ni^{2+} (50,100,250, 500 or 1000 mg/L), pH = 3.0, 4.0, 5.0 or 6.0	Pb(II), Cd(II), Zn(II) Reactor: Two-chamber Reaction: $Cu^{2+} + 2e^- = Cu$ $Pb^{2+} + 2e^- = Cd$ $Zn^{2+} + 2e^- = Cd$ $Zn^{2+} + 2e^- = Zn$ Redox potential: 0.340, - 0.13, -0.4, -0.762 Electron donor: Acetate (1640 mg/L), pH 7.2 Electron acceptor: Cu^{2+} (800 mg/L) Pb ²⁺ (400 mg/L) Cd^{2+} (800 mg/L) Zn ²⁺ (300 mg/L)
Metal conversion using bio-cathodes	Type of metal: Cr(VI) Reactor: Two-chamber Reaction: $Cr_2O_7^{2^-} + 14H^+ + 6e^- =$ $2Cr^{3^+} + 7H_2O$ $2Cr^{3^+} + 7H_2O =$ $2Cr(OH)_3(s) + 6H^+ + H_2O$ (6.5 < pH <10) Redox potential: 0.365 Electron donor: Excess acetate	

	Electron acceptor: $Cr^{6+} = 22,31,40$ and 63 mg/L	
Metal conversion using	Type of metal: Cr(VI)	
bio-cathodes supplemented	Reactor: Two-chamber	
by external power sources	Reaction: $Cr^{6+} - Cr^{3+} +$	
	Cr(OH) ₃	
	Redox potential: NA	
	Electron donor: Acetate (1000 mg/L)	
	Electron acceptor: $Cr^{6+} =$	
	20 mg/L	

8. State five (5) microbial and precipitation of metal ions. <u>*put in table.</u>

Eg

Metal ions	Microbial Species	Reference
As(V)	Chrysiogenes arsenates; Desulfotomaculum auripigmentum	Macy et al. (1996)

Table 8.0: Microbial species involved in precipitation of some metal ions

Metal ions	Microbial Species	Reference
Se(VI)	Desulfovibrio desulfuricans and Bacillus sp	Kashiwa et al (2000); Tomei
		et al (1995)
Se(IV)	Anaeromyxobacter dehalogenans, Bacillus	Combs et al (1996); Garbisu
	subtilis, Microbacterium arborescens,	et al (1996); He and Yao
	Rhodospirillum rubrum,	(2011); Kessi et al (1999);
	Pseudomonas fluorescens and Desulfovibrio	Tomei et al (1995)
	desulfuricans	
Pd(II)	Geobacter sulfurreducens, Cupriavidus necator,	Deplanche et al (2012);
	Cupriavidus metallidurans and Escherichia coli	Gauthier et al (2010); Yates
		et al (2013)
Au(III)	Shewanella algae, Geobacillus sp., Cupriavidus	Correa-Llanten et al (2013);
	metallidurans and Verticillium luteoalbum	Gericke and Pinches (2006);
		Konishi et al (2006);
		Reith et al (2009).

9. State one (1) advantage and disadvantage of the traditional metal recovery technologies (*put in table):

a. Membrane-based project

Eg

Technology	Advantage	Disadvantage
Membrane	High separation selectivity	High operational cost and
		fouling issue

- b. Ion exchange
- c. Activated carbon
- d. Chemical precipitation
- e. Electrocoagulant
- f. Bioremediation

Traditional metal recovery	Advantage	Disadvantage
technology		
Ion exchange	Has high removal efficiency and fast kinetics	Not suitable for high concentration wastewater due to saturation of resins
	Good option for smaller scale	
	industrial waste treatment	
	processes	
Activated carbon	Effective in metal adsorption	Decent adsorption for certain
	due to large surface area and	metal ions only.
	biosorbents may be sourced	
	from low-cost materials such	
	as waste rice husk or fly ash.	
Chemical precipitation	Simple, relatively efficient	Generate large amount of
	and amongst popularly used	toxic sludge therefore
	method.	needing additional processing
		for disposal.
Electrocoagulant	Do not need chemical	Hazardous sludge disposal
	coagulating agents	and anode replacement
		issues.
Bioremediation	Cost-effective and	Limitation on disposal of
	environmentally friendly.	contaminated plants.

10. Illustrate five (5) challenges for the metal removal and recovery from wastewater (put in a mind map method)

Figure 5.0: Challenges for metal removal and recovery from wastewater.