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1. INTRODUCTION 

 

A partial differential equation (PDE) is an equation that relates a function of more than 

one variable to its partial derivatives. PDEs are more ideal than ordinary differential equation 

(ODE) when dealing with functions of several variables which can be solved by hand or can 

be used to create a computer model. When dealing with real-life problems like modelling the 

temperature in a thin metal bar, we have to deal with two variables simultaneously which are 

position and time. Several methods for solving PDEs have been proposed to solve this 

modeling problems. In this project, we are using separation of variable to solve the heat 

equation. 

 

However, PDEs are not always the best option when dealing with real-life problems. This 

is because the model is not always accurate due to incomplete knowledge and information of 

the modeling system. One of them is the initial value assigned to the model. To handle 

uncertainty quantities, researchers proposed several new concepts includes fuzzy set theory. 

This theory is able to deal with differential equation possessing uncertainties at initial values. 

Hence, we solve the heat equation by using fuzzy partial differential equation (FPDE) and 

fuzzy set theory.  

 

Fuzzy sets were introduced in 1965 by Zadeh, where the author emphasized that a 

number can be classified into certain membership function rather than we represent it as a 

discrete or crisp number. Study of fuzzy partial differential equations (FPDEs) means the 

generalization of partial differential equations (PDEs) in fuzzy sense. While doing modelling 

of real situation in terms of partial differential equation, we see that the variables and 

parameters involve in the equations are uncertain. We express this impreciseness and 

uncertainties in terms of fuzzy numbers. So we come across with fuzzy partial differential 

equation. To study the solution of fuzzy initial and boundary value problems, we need the 

concept of differentiability of fuzzy-valued function. Hence, we decided to use Seikkala 

differentiability of a fuzzy-valued function. 

  



2. OBJECTIVES 

 

For this project, we should be able to achieve the following objectives: 

 To solve heat equation and fuzzy heat equation. 

 To study the effect of fuzziness on heat equation. 

 To investigate the relationship between partial differential equation and fuzzy partial 

differential equation. 

 Able to understand the application of fuzzy set theory in real world.



3. METHODOLOGY 

 

In this section, we explain the modeling of heat equation and solution for partial differential 

equation (PDE) and fuzzy partial differential equation (FPDE). 

 

a) Partial differential equation (PDE) 

Solving the heat equation using method of separation of variables: 

The heat equation is in the form 

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
 

Initial condition:  𝑢(𝑥, 0) = 𝑓(𝑥)      

Boundary condition:  𝑢(0, 𝑡) = 0       𝑢(𝐿, 𝑡) = 0  

By using method of separation of variables, we will get the solution to the partial differential 

equation 

𝑢(𝑥, 𝑡) = ∑ 𝐵𝑛sin (
𝑛𝜋𝑥

𝐿

𝑀

𝑛=1

)𝑒−𝑘(
𝑛𝜋
𝐿

)
2

𝑡
 

Take the limit as M→∞ and the solution becomes 

𝑢(𝑥, 𝑡) = ∑ 𝐵𝑛sin (
𝑛𝜋𝑥

𝐿
∞
𝑛=1 )𝑒−𝑘(

𝑛𝜋

𝐿
)

2
𝑡
  (1) 

The solution will satisfy any initial condition that can be written in the form 

𝑢(𝑥, 0) = ∑ 𝐵𝑛sin (
𝑛𝜋𝑥

𝐿

∞

𝑛=1

) 

We can determine the 𝐵𝑛 when we find the Fourier sine series of initial condition. 

𝐵𝑛 =
2

𝐿
∫ 𝑓(𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥          𝑛 = 1,2,3, …

𝐿

0

 

𝐵𝑛 =
2

𝐿
∫ 0 ∙ 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥     

𝐿

0

 

𝐵𝑛 =
2

𝐿
∫ 0

𝐿

0

 

𝐵𝑛 = 0 

 

 



Then plug 𝐵𝑛 into the solution (1), we will get the solution of the heat equation as 

𝑢(𝑥, 𝑡) = ∑(0)sin (
𝑛𝜋𝑥

𝐿

∞

𝑛=1

)𝑒−𝑘(
𝑛𝜋
𝐿

)
2

𝑡
 

𝑢(𝑥, 𝑡) = 0 

 

b) Fuzzy Partial Differential Equation (FPDE) 

Solving fuzzy heat equation using Seikkala differentiability of a fuzzy-valued function:  

Let 𝐼1 = [0,1] and 𝐼2 = [0,1]. Consider a fuzzy heat equation  

𝜕𝑈̃

𝜕𝑡
= 𝑃̃ ⊗

𝜕2𝑈̃

𝜕𝑥2
 

where  𝑃̃ is a fuzzy diffusivity , 𝑈̃(𝑥, 𝑡) is fuzzy temperature at (𝑥, 𝑡) ∈ 𝐼1 × 𝐼2  and ⊗ is 

fuzzy multiplication operator. We have specific fuzzy boundary conditions 𝑈̃(0, 𝑡) =

 𝑈̃(1, 𝑡) = 0̃ and fuzzy initial condition 𝑈̃(𝑥, 0) =  𝐶̃ ⊙ cos (𝜋𝑥 −
𝜋

2
), where 𝐶̃ is a fuzzy 

number (An operator ⊙ defines multiplication of a fuzzy number with a real number), and 

0̃(𝑟) = 1 at 𝑟 = 0 and 0̃(𝑟) = 0 for 𝑟 ≠ 0. As the fuzzy initial condition involves cosine 

function,  
𝜕2𝑈1

𝜕𝑥2 < 0,
𝜕2𝑈2

𝜕𝑥2 < 0 , the system of parametric form of heat equation 

𝜕𝑢1

𝜕𝑡
= 𝑚𝑖𝑛 {𝑝1(𝛼)

𝜕2𝑢1

𝜕𝑥2
, 𝑝1(𝛼)

𝜕2𝑢2

𝜕𝑥2
, 𝑝2(𝛼)

𝜕2𝑢1

𝜕𝑥2
, 𝑝2(𝛼)

𝜕2𝑢2

𝜕𝑥2
}, 

𝜕𝑢2

𝜕𝑡
= 𝑚𝑖𝑛 {𝑝1(𝛼)

𝜕2𝑢1

𝜕𝑥2
, 𝑝1(𝛼)

𝜕2𝑢2

𝜕𝑥2
, 𝑝2(𝛼)

𝜕2𝑢1

𝜕𝑥2
, 𝑝2(𝛼)

𝜕2𝑢2

𝜕𝑥2
}, 

can be simplified as 

𝜕𝑢1

𝜕𝑡
= 𝑝2(𝛼)

𝜕2𝑢1

𝜕𝑥2
 

𝜕𝑢2

𝜕𝑡
= 𝑝1(𝛼)

𝜕2𝑢2

𝜕𝑥2
 

for all(𝑥, 𝑡) ∈  𝐼1 × 𝐼2  and all 𝛼 ∈ [0,1]. Subject to 

𝑢𝑖(0, 𝑡, 𝛼) =  𝑢𝑖(1, 𝑡, 𝛼) = 0 

𝑢𝑖(𝑥, 0, 𝛼) =  𝑐𝑖(𝛼)𝑐𝑜𝑠(𝜋𝑥 − 𝜋/2)  



For 𝑖 = 1,2. The solution is  

𝑢1(𝑥, 𝑡, 𝛼) = 𝑐1(𝛼)𝑒−𝑝2(𝛼)𝜋2𝑡 cos (𝜋𝑥 −
𝜋

2
) 

𝑢2(𝑥, 𝑡, 𝛼) = 𝑐2(𝛼)𝑒−𝑝1(𝛼)𝜋2𝑡cos (𝜋𝑥 −
𝜋

2
)  

for (𝑥, 𝑡)  ∈  𝐼1 × 𝐼2 and all 𝛼 ∈  [0,1]. 

From the membership function of a triangular fuzzy number, we know that the 𝛼-level set of 

𝑎̌ is then 

𝑎̃𝛼 = [(1 − 𝛼)𝛼𝐿 + 𝛼𝑎, (1 − 𝛼)𝑎𝑈 + 𝛼𝑎] 

Now take fuzzy diffusivity constant as a fuzzy number 𝑃̃ = (−1,0,1) a triangular fuzzy 

number with 𝑝1(𝛼) = −1 + 𝛼 𝑎𝑛𝑑 𝑝2(𝛼) = 1 − 𝛼, 𝛼 ∈ [0 ,1]. Let 𝐶̃ = (−1,0,1) as a 

coefficient in the fuzzy initial condition 𝑈̃(𝑥, 0) = 𝐶̃ ⊙ cos (𝜋𝑥 −
𝜋

2
). So that 𝑈̃(𝑥, 0) =

2̃ ⊙ cos (𝜋𝑥 −
𝜋

2
) where 𝑐1(𝛼) = −1 + 𝛼 and 𝑐2(𝛼) = 1 − 𝛼. By substituting 𝑝𝑖(𝛼), 

𝑐𝑖(𝛼), 𝑖 = 1, 2 in (2) and (3), we get the solution as 

𝑢1(𝑥, 𝑡, 𝛼) = (−1 + 𝛼)𝑒−(1−𝛼)𝜋2𝑡cos (𝜋𝑥 −
𝜋

2
) (4) 

𝑢2(𝑥, 𝑡, 𝛼) = (1 − 𝛼)𝑒−(−1+𝛼)𝜋2𝑡cos (𝜋𝑥 −
𝜋

2
)  (5) 

(2) 

(3) 



4. RESULT AND ANALYSIS 

The solution obtained using the differential equation and fuzzy differential equation 

explained in previous section are visualized below.  

 

a) Heat Equation 

 

 
Figure 1: The solution for heat equation 

 

Since the initial condition 𝑓(𝑥) = 0, then we get the solution 𝑢(𝑥, 𝑡) = 0 for all time and 

position of x which called the trivial solution. There are no heat sources or sinks in the rod in 

which the temperature in the rod is 0℃ everywhere along its length. From figure 1, it shows 

the temperature will be constant zero at every point in the cross section at that x since we get 

zero solution.  

  



b) Fuzzy Heat Equation  

 

 
Figure 2: The solution of 𝑢(𝑥, 𝑡) when 𝑡 = 0. 

From Figure 2, the maximum diameter of the graph is 2 since the minimum and maximum 

temperature are −1℃ and 1℃ respectively. As α increases, the diameter of the graph 

decreases and it contracts to a crisp solution. Hence, the graph converges. 

 

Figure 3: The solution of 𝑢(𝑥, 𝑡) when 𝑡 = 2. 
 

From Figure 3, the maximum diameter of the graph is 3 × 108. As α increases, the diameter 

of the graph decreases and it contracts to a crisp solution. Hence, the graph converges. 



 

Figure 4: The solution of 𝑢(𝑥, 𝑡) when 𝑡 = 4. 

From Figure 4, the maximum diameter of the graph is 13.97 × 1016. As α increases, the 

diameter of the graph decreases and it contracts to a crisp solution. Hence, the graph 

converges. 

 

Figure 5: The solution of 𝑢(𝑥, 𝑡) when 𝑥 = 0. 

From Figure 5, the maximum diameter of the graph is 12 × 10−13. As α increases, the 

diameter of the graph decreases and it contracts to a crisp solution. Hence, the graph 

converges. 



 

Figure 6: The solution of 𝑢(𝑥, 𝑡) when 𝑥 = 2. 

From Figure 6, the maximum diameter of the graph is 3.55 × 10−12. As α increases, the 

diameter of the graph decreases and it contracts to a crisp solution. Hence, the graph 

converges. 

 

Figure 7: The solution of 𝑢(𝑥, 𝑡) when 𝑥 = 4. 

From Figure 7, the maximum diameter of the graph is 8.28 × 10−12. As α increases, the 

diameter of the graph decreases and it contracts to a crisp solution. Hence, the graph 

converges. 



5. DISCUSSION 

 

Partial differential equation (PDE) in real world is not always perfect because it lacks 

information. Uncertainties occur in almost every aspect in our life, especially when dealing 

with real life problem. The initial value of PDEs may contain some uncertainty and fuzziness. 

By using fuzzy set theory, we can overcome this problem since the classical differential 

equation cannot cope with the uncertainty. These are the reasons of having fuzzy initial and 

boundary conditions in solving the heat equation. The model of uncertainty used in this fuzzy 

heat equation model was by the triangular fuzzy numbers. The substitution of triangular fuzzy 

number (−1,0,1) gives the uncertainty for lower bound −1 + 𝛼 and upper bound 1 − 𝛼. 

 

 There are several types of uncertainty appear in modelling and differential equation 

which are lack of information, abundance of information, conflicting evidence, ambiguity, 

measurement and belief. Lack of information is probably the most frequent cause for 

uncertainty. Abundance of information is due to the limited ability of human beings to 

perceive and process simultaneously large amounts of data. Uncertainty might also be due to 

conflicting evidence, there might be considerable information available pointing to a certain 

behavior of a system and additionally there might also be information available pointing to 

another behavior of the system. By ambiguity we mean a situation in which certain linguistic 

information, for instance, has entirely different meanings. For measurement, an "imagined" 

exact property cannot be measured perfectly, we have some uncertainty about the real 

measure and we only know the indicated measure. We know the cause of uncertainty 

situations in which all information available to the observer is subjective as a kind of belief in 

a certain situation. 

 

By solving the heat equation, we will get zero solution for any value of x and t since the 

initial condition is zero. For fuzzy heat equation, we obtained the solution as in (4) and (5). 

The solution is proposed using Seikkala differentiability of a fuzzy-valued function. The 

solution is unique since Seikkala derivative provides only one solution. This means that if 

𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are two different functions that satisfy the same initial boundary value 

problem for the heat equation, then 𝑓 and 𝑔 have the same form.  

  



6. CONCLUSION 

 

We have demonstrated the fuzzy partial differential equation for finding the solution of 

heat equation with uncertainty and fuzziness. The effect of fuzziness have changed the 

solution we obtained in heat equation from zero solution to a unique solution. Fuzzy heat 

equation shows a different result because of the fuzzy boundary and initial conditions. Fuzzy 

set theory is significant due to fuzziness and uncertainty in real-life practical application, 

hence, our objective to understand the application of fuzzy set theory in real world is 

achieved.  

 

The relationship between partial differential equation and fuzzy partial differential 

equation can be seen clearly. We also provide some explanation on the type of uncertainty 

such as lack of information, abundance of information, conflicting evidence, ambiguity, 

measurement and belief.  The convergence of the heat solution has been shown for different 

values of 𝑥 and 𝑡. It can be seen that the method of Seikkala derivative is one of the methods 

that shows the effectiveness and accuracy in solving the heat equation. Using Seikkala 

method, we solve the heat equation for which  it is difficult to find the solution by classical 

method.
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APPENDIX 

 

Coding for MATLAB Software 

 

Coding that we are using in MATLAB software to plot 3-dimensional graph as illustrated in 

Section 4 are as following: 

 

1) M-file: 

function a = plot_x(x) 
    % To find the lower and upper bound of U for value x 
     
    syms t y; % y is alpha 
    u1 = (-1 + y)*exp(-(1-y)*(pi^2)*t)*cos(pi*x - pi/2); 
    u2 = (1 - y)*exp(-(-1+y)*(pi^2)*t)*cos(pi*x - pi/2); 
    fsurf(u1, [0 1]) 
    hold on 
    fsurf(u2, [0 1]) 
    xlabel('t'); ylabel('α'); zlabel('Temperature (℃)'); 
end 

 

2) M-file: 

function a = plot_t(t) 
    % To find the lower and upper bound of U for value t 
     
    syms x y; % y is alpha 
    u1 = (-1 + y)*exp(-(1-y)*(pi^2)*t)*cos(pi*x - pi/2); 
    u2 = (1 - y)*exp(-(-1+y)*(pi^2)*t)*cos(pi*x - pi/2); 
    fsurf(u1, [0 1]) 
    hold on 
    fsurf(u2, [0 1]) 
    xlabel('x'); ylabel('α'); zlabel('Temperature (℃)'); 
end 

 

3) Command window: 

plot_t(0) 
figure(2) 
plot_t(2) 
figure(3) 
plot_t(4) 
figure(4) 
plot_x(0) 
figure(5) 
plot_x(2) 
figure(6) 
plot_x(4) 

 


