

COURSE OUTLINE SEMESTER 1 2020/2021

1. COURSE INFORMATION

Course Code/Name	:	Advanced Calculus MAT201
No. of Units	:	4
Lecture Time	:	Tue 11am – 12pm (DK SK3), Thurs 10am – 11am (DK G31), Fri 8am – 9am (DK G)
Tutorial Time	:	Mon 4pm – 5 pm; Tue 9am – 10am; Wed 8am – 9 am, 2pm – 3pm (all PPSM 204); Tue 4pm – 5pm (BT146)
Instructor	:	Dr. Lee See Keong, Dr. Norazrizal Aswad bin Abdul Rahman
Email	:	sklee@usm.my, aswad.rahman@usm.my
Office	:	PPSM Room 111, Room 123
Phone	:	04-6532070, 04-6533944
Webpage	:	

2. COURSE SYNOPSIS

This course discusses further the basics of calculus. Convergence of sequences and series, as well as improper integrals are discussed. Representations of functions as power series are studied. The second half of the course focuses on the theory of limits, continuity, differentiation and integration of functions of several variables, up to double integration.

3. LEARNING OUTCOME

No.	Course Outcome	PO	LT	SS	Assessment
1	Explain the fundamental concept and theories related to functions of one and several variables correctly	PO3	C6	CTPS2	Assignment, Test, Quiz
2	Describe clearly the concept for functions of several variables and their occurrences in the real world	PO6	A3	TS2	Assignment
3	Display effort to investigate or search information in completing a task related to functions of one and several variables	P07	A5	LL1	Assignment

4. GRADING

COURSEWORK (60%)								
No.	Assessments	CO	PO	LT	Marks			
		CO1	PO3	C6	20			
1	Assignment	CO2	P06	A3	5			
		CO3	P07	A5	5			
2	Test	CO1	PO3	C6	20			
3	Quiz	C01	PO3	C6	10			
FINAL EXAMINATION (40%)								

Range	80-100	70-	64-	58-	52-	46-	40-	36-	32-	28-	25-	0-
Grade	А	A-	B+	В	B-	C+	С	C-	D+	D	D-	F

5. REFERENCES

Stewart, J. (2016). Calculus - Metric Version, 8th edition. Cengage Learning Inc (textbook)

How, G.A. and Ong B.H. (2008) Calculus Vol. 2. Penerbit USM Hass, J., Weir, M. and Thomas, G. (2020). University Calculus:Early Transcendentals, 4th edition. Pearson Spivak, M. (2008) Calculus, 4th edition, Publish or Perish

6. COURSE OUTLINE & CLASS SCHEDULE*

WEEK	DATE	LECTURER	TOPICS	REMARK
1	12-16 Oct 2020	Lee	Indeterminate forms and l'Hospital's rule Improper integrals – Type I	
2	19-23 Oct 2020	Lee	Improper integrals – Type II Sequences – definition, examples Convergent and Divergent sequences Bounded and Monotonic sequences – Monotone Convergence Theorem	
3	26-30 Oct 2020	Lee	Series – definition, properties Test for Divergence Integral Test	Quiz 1
4	02-06 Nov 2020	Lee	Comparison Test, Limit Comparison Test Alternating series Test	
5	09-13 Nov 2020	Lee	Absolute and Conditionally convergences Ratio Test and Root Test Power series Radius and Interval of convergence	Assignment 1 due
6	16-20 Nov 2020	Lee	Differentiability and Integrability of power series Representation of functions as power series Taylor and Maclaurin series	Test 1 (19/11/2020)
7	23– 27 Nov 2020	Lee	Taylor polynomials Taylor's Theorem Several forms of remainder	Quiz 2
8			MID-SEMESTER BREAK	
9	07-11 Dec 2020	Aswad	Functions of several variables Limit and Continuity of functions of several variables Partial derivatives	
10	14-18 Dec 2020	Aswad	Chain rule Implicit differentiation. Directional derivatives	
11	21–25 Dec 2020	Aswad	Tangent plane Linear approximation and Differentials Differentiable function	Quiz 3
12	28 Dec 2020 - 01 Jan 2021	Aswad	Gradient vector or Total derivative Differentiability	
13	04-08 Jan 2021	Aswad	Maximum and Minimum values Method of Lagrange Multiplier	Test 2 (07/01/2021)

14	11-15 Jan 2021	Aswad	Double integrals over rectangular region Double integrals over general region Double integral in polar form Change of variables	Assignment 2 due
15	18-22 Jan 2021	Aswad	Triple integrals – rectangular box Triple integrals – general region Cylindrical coordinate Spherical coordinate	Quiz 4
16			REVISION WEEK	

* Subject to change

7. RESOURCES ON E-LEARNING

(Lecture) Tuesday: <u>https://usm-cmr.webex.com/usm-cmr/j.php?MTID=mf2e16897cfca0f33e330100a43fe2413</u> Thursday: <u>https://usm-cmr.webex.com/usm-cmr/j.php?MTID=m574e53c426335f451065d2592c1d5952</u> Friday: <u>https://usm-cmr.webex.com/usm-cmr/j.php?MTID=medcdd158971c9baafed03b805852fc11</u>

8. FURTHER INFORMATION

Student who has an emergency on the day of a test should inform the lecture by an email as early as possible. **Otherwise no make-up test will be considered**.