Started on	Saturday, 6 March 2021, 8:12 AM
State	Finished
Completed on	Saturday, 6 March 2021, 8:12 AM
Time taken	12 secs
Grade	0.00 out of 10.00 (0 %)
uestion 1	
lot answered	
larked out of 1.00	
$A = \int \int_R r dr dr$ Select one:	and bounded region R in polar coordinates can be computed by using the following formula: $ heta.$
$A = \int \int_R r dr dr$ Select one: True False	heta.
$A = \int \int_R r dr dr$ Select one:	heta.
$A = \int \int_R r dr dr$ Select one: True False The correct answers	heta.
$A = \int \int_R r dr dr dr dr dr dr dr $	heta.
$A = \int \int_R r dr dr$ Select one: True False The correct answers	heta.
$A = \int \int_R r dr dr$ Select one: True False The correct answered It answered Marked out of 1.00	heta.
$A = \int \int_R r dr dr dr dr dr dr dr $	θ. wer is 'True'.
$A = \int \int_R r dr dr dr dr dr dr dr $	θ. wer is 'True'.
$A = \int \int_R r dr dr dr dr dr dr dr $	θ. wer is 'True'.

Not answered

Marked out of 1.00

The following is a step to compute a prism volume:

$$\int_0^2 \int_0^3 \int_0^{(3-y)/3} \, dz \, dy \, dx = \int_0^2 \, \frac{3}{2} \, dx.$$

The number $\frac{3}{2}$ in the right hand side of the equation is the area of vertical slice, cut by a plane x=constant.

Select one:

- True
- False

The correct answer is 'True'.

Question 4

Not answered

Marked out of 1.00

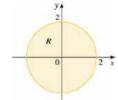
$$\int\int_R f(x,y)\,dA \geq \int\int_R g(x,y)\,dA$$
 if $f(x,y)\geq g(x,y)$ on R .

Select one:

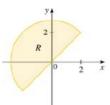
- True
- False

The correct answer is 'True'.

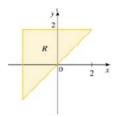
Question ${\bf 5}$


Not answered

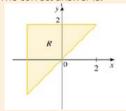
Marked out of 1.00


For which of the following regions is most suitable for you to use rectangular coordinates?

Select one:



O b.



O c.

Your answer is incorrect.

The correct answer is:

Question 6
Not answered
Marked out of 1.00
When changing to double integral in polar coordinates, we consider the following equation:
$\int \int_R f(x,y) dA = \int_lpha^eta \int_a^b f(r\cos heta,r\sin heta) dr d heta$
Select one:
True
False
The correct answer is 'False'.
Question 7
Not answered
Marked out of 1.00
Consider $D=\{(x,y) c\leq y\leq d, h_1(y)\leq x\leq h_2(y)\}$ for double integration. What type of region is D?
Select one:
a. Type II
b. Type I
Your answer is incorrect.
The correct answer is:
Type II
Question 8
Not answered
Marked out of 1.00
A triple integral will always give a positive result.
Select one: True
False
The correct answer is 'False'.

3/6/2021

Question **9**

Not answered

Marked out of 1.00

In spherical coordinate, identify the surface with equation $r^2+z^2=49$.

Select one:

- a. A sphere with radius 7 centered at the origin.
- b. A cylinder with radius 7 centered at the origin.
- c. A cone with radius 7 centered at the origin.

Your answer is incorrect.

The correct answer is:

A sphere with radius 7 centered at the origin.

Question 10

Not answered

Marked out of 1.00

Change the point (3,-3,5) from rectangular coordinates to cylindrical coordinates.

Select one:

- $\bigcirc \ \text{a.} \ (3\sqrt{2}, -\frac{\pi}{4}, 5)$
- $0 \text{ b.} (7, \frac{7\pi}{4}, 5)$
- $(-3\sqrt{2}, \frac{3\pi}{4}, 5)$

Your answer is incorrect.

The correct answer is:
$$(3\sqrt{2}, -\frac{\pi}{4}, 5)$$