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Tangent Planes and Linear Approximation

One of the most important ideas in single-variable calculus is that as we zoom in toward a point
on the graph of a differentiable function, the graph becomes indistinguishable from its tangent
line and we can approximate the function by a linear function. We shall utilize the same idea
when considering function with more than two variables particularly on function with three
variables.

As we zoom in toward a point on a surface that is the graph of a differentiable function of
two variables, the surface looks more and more like a plane (its tangent plane) and we can
approximate the function by a linear function of two variables.

Figure 1. The graphs plotted are function z = 2x2 +y2. Notice that the tangent
plane become almost parallel to the surface as we zoom in (from left to right).

Can you relate this on why the earth seems like flat for us but the photos from satellite shows
that the earth is in fact a globe?

Tangent Planes

To see how tangent planes relate to partial derivatives, consider the following figure.

Suppose a surface has equation z = f(x, y), where f has continuous first partial derivatives,
and let P (x0, y0, z0) be a point on S. As in the preceding section, let C1 and C2 be the curves
obtained by intersecting the vertical planes y = y0 and x = x0 with the surface S. Then the
point lies on both C1 and C2. Let T1 and T2 be the tangent lines to the curves C1 and C2 at the
point P . Then the tangent plane to the surface S at the point P is defined to be the plane



that contains both tangent lines T1 and T2.

On the other hand, you can also see that both tangent line of C1 and C2 lie on the tangent
plane. So, you might think that the tangent plane to S at P consisting of all possible tangent
lines at P to curves that lie on S and pass through P .

From Calculus 1, we learn that the equation of any plane passing through point P (x0, y0, z0) is
given by

A(x− x0) +B(y − y0) + C(z − z0)
By some manipulation, we have

z − z0 = a(x− x0) + b(y − y0), a = −A/C and b = −B/C.

To find a, we consider the intersection between the tangent plane at P with the plane y = y0
(like T1, if you consider the previous graph). Substituting y = y0 into the previous equation,
we have

z − z0 = a(x− x0).

Recall that
z − z0
x− x0

= fx, so a = fx(x0, y0). Similarly when we consider the interception between

tangent plane at P with the plane x = x0, we will have b = fy(x0, y0).

Therefore, we arrive at the following conclusion.

Suppose f has continuous partial derivatives. An equation of the tangent plane to the
surface z = f(x, y) at the point P (x0, y0, z0) is

(1) z − z0 = fx(x− x0) + fy(y − y0).

Example 1. Find the tangent plane to the elliptic paraboloid z = 2x2 +y2 at the point (1, 1, 3).
Solution. Let f(x, y) = 2x2 + y2. Then,

fx(x, y) = 4x fy(x, y) = 2y

fx(1, 1) = 4 fy(1, 1) = 2.

Using the equation of tangent plane, at (1, 1, 3), we have

z − 3 = 4(x− 1) + 2(y − 1)

or z = 4x+ 2y − 3.

Linear Approximations

From Example 1, we find that the equation of the tangent plane to the function f(x, y) = 2x2+y2

at (1, 1, 3) is z = 4x + 2y − 3. So, the function L(x, y) = 4x + 2y − 3 can be used as an
approximation of f(x, y) at (x, y) near (1, 1). The function L is called the linearization of
f at (1, 1). For example, consider the point (1.1, 0.95), we have



f(1.1, 0.95) ≈ 4(1.1) + 2(0.95)− 3 = 3.3

which is pretty close to f(1.1, 0.95) = 2(1.1)2 + (0.95)2 = 3.3225. Bear in mind that this only
works if the point considered is close to (1, 1).

From Equation 1, if we consider (x0, y0)=(a, b) and z0 = f(a, b) (point (a, b, f(a, b)), we have

z = f(a, b) + fx(x− x0) + fy(y − y0) = L(x, y)

since z, the equation of tangent to the plane is also the linear function to whose graph is tangent
to the plane given by L(x, y). Therefore, the approximation

f(x, y) ≈ f(a, b) + fx(x− x0) + fy(y − y0)

is called the linear approximation or the tangent plane approximation of f at (a, b).

Definition 1. If z = f(x, y), then f is differentiable at (a, b) if ∆z can be expressed in the form

∆z − fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y

where ε1 and ε2 → 0 as (∆x,∆y)→ (0, 0).

From the definition, we can say that the tangent plane approximates the graph of f better near
the point of tangency. At times, checking the differentiability using this definition is quite hard.
The next theorem provides a more convenient sufficient condition for differentiability.

Theorem 1. If the partial derivatives fx and fy exist near (a, b) and are continuous at (a, b),
then f is differentiable at (a, b).

Example 2. Show that f(x, y) = xexy is differentiable at (1, 0) and find its linearization there.
Then use it to approximate f(1.1,−0.1).
Solution. The partial derivatives are

fx(x, y) = exy + xyexy fy(x, y) = x2exy

fx(1, 0) = 1 fy(0, 1) = 1.

Both fx and fy are continuous, so they are differentiable according to the Definition 1. Thus,
the linearization is

L(x, y) = f(1, 0) + fx(1, 0)(x− 1) + fy(1, 0)(y − 0)

= x+ y

The corresponding linear approximation is

f(x, y) = exy ≈ x+ y

so, f(1.1,−0.1) ≈ 1.1− 0.1 = 1

which is quite close to the actual value, 0.98542.


