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Implicit Differentiation

The Chain Rule can be used to give a more comprehensive description of the process of implicit
differentiation involving function of several variables. We suppose that an equation of the
form F(z,y) defines y implicitly as a differentiable function of x, that is, y = f(z), where
F(z, f(x)) = 0 for all z in the domain of f. If F' is differentiable, we can apply Case 1 of the
Chain Rule to differentiate both sides of the equation F'(z,y) = 0 with respect to z. Since both
x and y are functions of x, by using Chain Rule, we obtain
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To derive Equation (1), assumed that F(z,y) = 0 defines y implicitly as a function of z. The
Implicit Function Theorem gives condition which this assumption is valid. It takes that if
F' is defined on a disk containing (a,b), where F(a,b) = 0, F,(a,b) # 0, and F, and F), are
continuous on the disk, then the equation F'(x,y) = 0 defines y as a function of x near the point
(a,b) and the derivative of this function is given by Equation (1).

Example 1. Find 3/ if 23 + y® = 6x2y.

Solution. The equation can be written as
F(z,y) =2 +y* — 62y = 0,
So, from Equation (1), we have
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Now we suppose that z is given implicitly as a function z = f(z,y) by an equation of the form
F(z,y,z) = 0. This means that F'(z,y, f(x,y)) = 0 for all (z,y) in the domain of f. If F' and
f are differentiable, then we can use the Chain Rule to differentiate the equation F'(z,y,z) =0
with respect to x as follows:
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(8_y = 0 means you are differentiating a constant with respect to z since y, like = is also an
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independent variable)
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Again, a version of the Implicit Function Theorem gives conditions under which our assump-
tion is valid: If F' is defined within a sphere containing (a, b, ¢), where F'(a,b,c) =0, F,(a,b,c) #
0, and F;, F, and F, are continuous inside the sphere, then the equation F'(z,y, z) = 0 defines
z as a function of z and y near the point (a, b, ¢) and this function is differentiable, with partial
derivatives given by Equation (2).
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Example 2. Find % and Zif 8 4 Y3+ 23 + 6zyz — 1.
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Solution. Let F(z,y,2) = 2> + 3> + 2° + 6zyz — 1. Then from Equation 2, we have
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