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Directional Derivatives

Recall that if z = f(x, y), then the partial derivatives fx and fy are defined as

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

fy(x0, y0) = lim
h→0

f(x0, y0 + h)− f(x0, y0)

h

and represents the rates of changes of z in the x and y-directions, that is, in the directions of
the unit vector i and j. But, what if we want to consider the rate of change of z in the direction
of an arbitrary unit vector u= 〈a, b〉?

To do this, we consider the surface S with equation z = f(x, y) (the graph of f) and we let
z0 = f(x0, y0). Then the point P (x0, y0, z0) lies on S. The vertical plane that passes through P
in the direction of u intersects S in a curve C. (See Figure 3.) The slope of the tangent line T
to C at the point P is the rate of change of z in the direction of u.

If Q(x, y, z) is another point on C and P ′, Q′ are the projections of P , Q on the xy-plane, then

the vector ~P ′Q′ is parallel to u and so

~P ′Q′ = hu = 〈ha, hb〉

for some scalar h. Therefore x− x0 = ha, y − y0 = hb, so x = x0 + ha, y = y0 + hb, and

∆z

h
=
z − z0
h

=
f(x0 + ha, y0 + hb)− f(x0, y0)

h
.

If we take the limit as h → 0, we obtain the rate of change of z (with respect to distance) in
the direction of u, which is called the directional derivative of f in the direction of u.
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Definition 1. The directional derivative of f at (x0, y0) in the direction of a unit vector
u = 〈a, b〉 is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
if this limit exists.

When we compute the directional derivative of a function defined by a formula, we generally
use the following theorem.

Theorem 1. If f is a differentiable function of x and y, then f has a directional derivative in
the direction of any unit vector u = 〈a, b〉 and

Duf(x, y) = fx(x, y)a+ fy(x, y)b

Proof. If we define a function g of the single variable h by

g(h) = f(x0 + ha, y0 + hb)

then, by the definition of a derivative, we have

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
= Duf(x0, y0)

(1)

On the other hand, we can write g(h) = f(x, y), where x = x0 + ha, y = y0 + hb, so the Chain
Rule gives

g′(h) =
∂f

∂x

dx

dh
+
∂f

∂y

dy

dh
= fx(x, y)a+ fy(x, y)b

If we now put h = 0, the x = x0, y = y0, and

g′(0) = fx(x0, y0)a+ fy(x0, y0)b (2)

Comparing Equations (1) and (2), we see that

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b

�

Sometimes, we will work with direction in terms of θ which is angles from the positive x-axis,
then we may write u= 〈cos θ, sin θ〉. Hence, from Theorem 1,

Duf(x, y) = fx(x, y) cos θ + fy(x, y) sin θ. (3)

Example 1. Find the directional derivative Duf(x, y) if f(x, y) = x3 − 3xy + 4y2 and u is the
unit vector given by the angle θ = π/6. What is Duf(1, 2)?

Solution. From Equation (3),

Duf(x, y) = fx(x, y) cos
π

6
+ fy(x, y) sin

π

6

= (3x2 − 3y)

√
3

2
+ (−3x+ 8y)

1

2

=
1

2
[3
√

3x2 − 3x+ (8− 3
√

3)y]

Therefore

Duf(1, 2) =
1

2
[3
√

3(1)2 − 3(1) + (8− 3
√

3)(2)] =
13− 3

√
3

2



The Gradient Vector

From Theorem 1, we see that te equation for directional derivatives can also be written as a dot
product of two vectors,

Duf(x, y) = 〈fx(x, y)a+ fy(x, y)〉 · 〈a, b〉 = 〈fx(x, y)a+ fy(x, y)〉 · u (4)

Remark 1. The first vector in this dot product occurs in many contexts and is termed as the
gradient of f and its notation is given in the following definition. (The gradient of f is also
referred to as grad f or ∇f)

Definition 2. If f is a function of two variables x and y, then the gradient of f is the vector
function ∇f defined by

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
∂f

∂x
i +

∂f

∂y
j

Note. Do not confuse with the ’Delta’ symbol for changes, ∆ with the gradient of f , ∇.

Example 2. If f(x, y) = sin x+ exy, then

Solution.

∇f(x, y) = 〈fx, fy〉 = 〈cosx+ yexy, xexy〉
and

∇f(0, 1) = 〈2, 0〉

Notice that we have another notation for directional derivatives in the direction of u, expresses
as the scalar projection of the gradient vector onto u.

Duf(x, y) = ∇f(x, y) · u. (5)

Example 3. Find the directional derivative of the function f(x, y) = x2y3 − 4y at the point
(2,−1) in the direction of the vector v = 2i + 5j.

Solution. We first compute the gradient vector at (2,−1):

∇f(x, y) = 2xy3i + (3x2y2 − 4)j

∇f(2,−1) = −4i + 8j

Note that v is not a unit vector, but since |v| =
√

29, the unit vector in the direction of v is

u =
v

|v|
=

2√
29

i +
5√
29

j

Therefore, by Equation (5), we have

Duf(2,−1) = ∇f(2,−1) · u = (−4i + 8j) ·
(

2√
29

i +
5√
29

j

)
=
−4 · 2 + 8 · 5√

29
=

32√
29

Three and More Variables

For functions of three variables, Duf(x, y, z) can be interpreted as the rate of change of the
function in the direction of a unit vector u.



Definition 3. The directional derivative of f at (x0, y0, z0) in the direction of a unit vector
u = 〈a, b, c〉 is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)

h
if this limit exists.

Using vector notation, we have

Duf(x0) = lim
h→0

f(x0 + hu)− f(x0)

h

where x0 = 〈x0, y0〉 if n = 2 and x0 = 〈x0, y0, z0〉 if n = 3.

If f(x, y, z) is differentiable and u = 〈a, b, c〉, then the same method that was used to prove
Theorem 1 can be used here. Thus,

Duf(x, y, z) = fx(x, y, z)a+ fy(x, y, z)b+ fz(x, y, z)c. (6)

For a function f of three variables, then ∇f is given by

∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉
or simply,

∇f = 〈fx, fy, fz〉 =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

Similar to functions of two variables, we can rewrite Equation (6) as follows.

Duf(x, y, z) = ∇f(x, y, z) · u (7)

Example 4. If f(x, y, z) = x sin yz,

(a) find the gradient of f and

(b) find the directional derivative of f at (1, 3, 0) in the direction of v = i + 2j− k.

Solution.

(a) The gradient of f is

∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉
= 〈sin yz, xz cos yz, xy cos yz〉

(b) At (1, 3, 0) we have ∇f(1, 3, 0) = 〈0, 0, 3〉. The unit vector in the direction of v = i + 2j− k
is

u =
1√
6
i +

2√
6
j− 1√

6
k

Therefore, from Equation (7),

Duf(1, 3, 0) = ∇f(1, 3, 0) · u

= 3k ·
(

1√
6
i +

2√
6
j− 1√

6
k

)
= 3

(
− 1√

6

)
= −

√
3

2




