
MAT201 Advance Calculus

Maximizing the directional derivatives

Suppose there is a function of two variables and we consider all of its possible partial derivatives.
This gives us the rates of change of the function, let say f , in all possible directions. The
questions arise are: In which of these directions does the function change fastest and what is
the maximum rate of change?

Theorem 1. Suppose f is a differentiable function of two or three variables. Then, the maximum
value of the directional derivative Du(fx) is |∇f(x)| and it occurs when u has the same direction
as the gradient vector ∇f(x).

Proof. From the equations we have in the topic of directional derivatives from previous class,
we have

Duf = ∇f · u = |∇f | |u| cos θ = |∇f | cos θ

where θ is the angle between ∇f and u. The maximum value of cos θ is 1 and this occurs when
θ = 0. Therefore the maximum value of Duf is |∇f | and it occurs when θ = 0, that is, when u
has the same direction as ∇f . �

Example 1. (a) If f(x, y) = xey, find the rate of change of f at the point P (2, 0) in the direction

from P to Q(
1

2
, 2).

(b) In what direction does f have the maximum rate of change? What is this maximum rate of
change?

Solution. (a) We first compute the gradient vector:

∇f(x, y) = 〈fx, fy〉 = 〈ey, xey〉
∇f(2, 0) = 〈1, 2〉

The unit vector in the direction of ~PQ = 〈−1.5, 2〉 is u =

〈
−3

5
,
4

5

〉
, so the rate of change of f

in the direction from P to Q is

Duf(2, 0) = ∇f(2, 0) · u = 〈1, 2〉 ·
〈
−3

5
,
4

5

〉
= 1(−3

5
) + 2(

4

5
) = 1

(b) According to Theorem 1, f increases fastest in the direction of the gradient vector∇f(2, 0) =
〈1, 2〉. The maximum rate of change is

|∇f(2, 0)| = |〈1, 2〉| =
√
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Example 2. Suppose that the temperature at a point (x, y, z) in space is given by

T (x, y, z) = 80/(1 + x2 + 2y2 + 3z2)

where T is measured in degrees Celsius and x, y, z in meters. In which direction does the
temperature increase fastest at the point (1, 1,−2)? What is the maximum rate of increase?

Solution. The gradient of T is

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k

= − 160x

(1 + x2 + 2y2 + 3z2)2
i− 320y

(1 + x2 + 2y2 + 3z2)2
j− 480z

(1 + x2 + 2y2 + 3z2)2)
k

=
160

(1 + x2 + 2y2 + 3z2)2
(−xi− 2yj− 3zk)

At the point (1, 1,−2) the gradient vector is

∇T (1, 1,−2) =
160

256
(−i− 2j + 6k) =

5

8
(−i− 2j + 6k)

By Theorem 1, the temperature increases fastest in the direction of the gradient vector∇T (1, 1,−2) =
5

8
(−i− 2j + 6k) or, equivalently, in the direction of −i− 2j + 6k or the unit vector (−i− 2j +

6k)/
√

41. The maximum rate of increase is the length of the gradient vector:

|∇T (1, 1,−2)| = 5

8
|−i− 2j + 6k| = 5

8

√
41

Therefore the maximum rate of increase of temperature is
5

8

√
41 ≈ 4 ◦C/m

Tangent planes to level surfaces

Suppose S is a surface with equation F (x, y, z) = k, that is, it is a level surface of a function
F of three variables, and let P (x0, y0, z0) be a point on S. Let C be any curve that lies on
the surface S and passes through the point P . Recall that the curve can be described by a
continuous vector function r(t) = 〈x(t), y(t), z(t)〉. Let t0 be the parameter value corresponding
to P ; that is, r(t0) = 〈x0, y0, z0〉. Since C lies on S, any point x(t), y(t), z(t) must satisfy the
equation of S, that is,

F (x(t), y(t), z(t)) = k

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the
Chain Rule to differentiate the previous equation.

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
+
∂F

∂z

dz

dt
= 0 (1)



But since ∇F = 〈Fx, Fy, Fz〉 and r′(t) = 〈x′(t), y′(t), z′(t)〉, Equation (1) can be written in terms
of a dot product as

∇F · r′(t) = 0 (2)

In particular, when t = t0, we have r(t0) = 〈x0, y0, z0〉. So,

∇F (x0, y0, z0) · r′(t0) = 0 (3)

Equation (3) says that the gradient vector at P , ∇F (x0, y0, z0), is perpendicular to the tangent
vector r′(t0) to any curve C on S that passes through P . If ∇F (x0, y0, z0) 6= 0, it is therefore
natural to define the tangent plane to the level surface F (x, y, z) = k at P (x0, y0, z0) as the
plane that passes through P and has normal vector ∇F (x0, y0, z0). Using the standard equation
of a plane, we can write the equation of this tangent plane as

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 (4)

The normal line to S at P is the line passing through P and perpendicular to the tangent
plane. The direction of the normal line is therefore given by the gradient vector ∇F (x0, y0, z0)
and so,

x− x0
Fx(x0, y0, z0)

=
y − y0

Fy(x0, y0, z0)
=

z − z0
Fz(x0, y0, z0)

(5)

In the special case in which the equation of a surface S is of the form z = f(x, y) (that is, S is
the graph of a function of two variables), we can rewrite the equation as

F (x, y, z) = f(x, y)− z = 0

and regard S as a level surface (with k = 0) of F . Then

Fx(x0, y0, z0) = fx(x0, y0)

Fy(x0, y0, z0) = fy(x0, y0)

Fz(x0, y0, z0) = −1



So, Equation (4) becomes

fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)− (z − z0) = 0

Example 3. Find the equations of the tangent plane and normal line at the point (−2, 1,−3)
to the ellipsoid

x2

4
+ y2 +

z2

9
= 3

Solution. The ellipsoid is the level surface (with k = 3) of the function

F (x, y, z) =
x2

4
+ y2 +

z2

9
Therefore we have

Fx(x, y, z) =
x

2
Fy(x, y, z) = 2y Fz(x, y, z) =

2z

9

Fx(−2, 1,−3) = −1 Fy(−2, 1,−3) = 2 Fz(−2, 1,−3) = −2

3

Then Equation 4 gives the equation of the tangent plane at (−2, 1− 3) as

−1(x+ 2) + 2(y − 1)− 2

3
(z + 3) = 0

which simplifies to 3x− 6y + 2z + 18 = 0.

By Equation 5, symmetric equations of the normal line are

x+ 2

−1
=
y − 1

2
=
z + 3

−2

3




