
MAT201 Advance Calculus

Maximum and Minimum Values

Similar to functions of single variable, we have the concept of minimum and maximum for
function of several variables. For example, a hill can be plotted into function of two variables.
Notice that, we can always locate the high and low point of the hill, where in Calculus, this
represent the minimum and maximum points. Consider the following figure for function of two
variables.

There are two points (a, b) where f has a local maximum, that is, where f(a, b) is larger than
nearby values of f(x, y). The larger of these two values is the absolute maximum. Likewise,
f has two local minima, where f(a, b) is smaller than nearby values. The smaller of these two
values is the absolute minimum.

Definition 1. A function of two variables has a local maximum at (a, b) if f(x, y) 6 f(a, b)
when (x, y) is near (a, b). [This means that f(x, y) 6 f(a, b) for all points (x, y) in some disk
with center (a, b) .] The number f(a, b) is called a local maximum value. If f(x, y) > f(a, b)
when (x, y) is near (a, b), then f has a local minimum at (a, b) and f(a, b) is a local minimum
value.

Note. If Definition 1 holds, then f has an absolute maximum (or absolute minimum) at (a, b).

Theorem 1. If f has a local maximum or minimum at (a, b) and the first-order partial deriva-
tives of f exist there, then fx(a, b) = 0 and fy(a, b) = 0.

Proof. Let g(x) = f(x, b). If f has a local maximum (or minimum) at (a, b), then g has a
local maximum (or minimum) at a, so g′(a) = 0 by Fermat’s Theorem (see Theorem 4.1.4 in
book). But g′(a) = fx(a, b) and so fx(a, b) = 0 . Similarly, by applying Fermat’s Theorem to
the function G(y) = f(a, y), we obtain fy(a, b) = 0. �

If we put fx(a, b) = 0 and fy(a, b) = 0 in the equation of a tangent plane, we get z = z0. Thus
the geometric interpretation of Theorem 2 is that if the graph of f has a tangent plane at a
local maximum or minimum, then the tangent plane must be horizontal.
A point is called a critical point (or stationary point) of f if fx(a, b) = 0 and fy(a, b) = 0, or
if one of these partial derivatives does not exist. Theorem 2 says that if f has a local maximum
or minimum at (a, b), then (a, b) is a critical point of f . However, as in MAT101, not all critical
points give rise to maxima or minima. At a critical point, a function could have a local maximum
or a local minimum or neither.

Example 1. Let f(x, y) = x2 + y2 − 2x− 6y + 14. Then

fx(x, y) = 2x− 2 fy(x, y) = 2y − 6
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Solution. These partial derivatives are equal to 0 when x = 1 and y = 3, so the only critical
point is (1, 3). By completing the square, we find that

f(x, y) = 4 + (x− 1)2 + (y − 3)2

Since (x − 1)2 > 0 and (y − 3)2 > 0, we have f(x, y) > 4 for all values of x and y. Therefore
f(1, 3) = 4 is a local minimum, and in fact it is the absolute minimum of f . This can be
confirmed geometrically from the graph of f which is the elliptic paraboloid with vertex (1, 3, 4)
shown in figure below.

Example 2. Find the extreme values of f(x, y) = y2 − x2.

Solution. Since fx = −2x and fy = 2y, the only critical point is (0, 0). Notice that for points
on the x-axis we have y = 0, so f(x, y) = −x2 < 0 (if x 6= 0). However, for points on the y-axis
we have x = 0, so f(x, y) = y2 > 0 (if y 6= 0). Thus every disk with center (0, 0) contains
points where f takes positive values as well as points where f takes negative values. Therefore
f(0, 0) = 0 can’t be an extreme value for f , so f has no extreme value.

The following theorem describe one of the most important test in this topic.

Theorem 2. ( Second Derivative Test) Suppose the second partial derivatives of f are continuous
on a disk with center (a, b), and suppose that fx(a, b) = 0 and fy(a, b) = 0 (that is, (a, b) is a
critical point of f). Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2

(1) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
(2) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
(3) If D < 0, then f(a, b) is not a local maximum or minimum.

Proof. We compute the second-order directional derivative of f in the direction of u = 〈h, k〉.
The first order derivative is given by

Duf = fxh+ fyk

If we perform second differentiation on the same function,
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uf = Du(duf) =

∂
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Completing the square, we obtain

D2
uf = fxx
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fxy
fxx

k

)2

+
k2

fxx
(fxxfyy − f 2

xy)

We are given that fxx(a, b) > 0 and D(a, b) > 0. But fxxx and D are continuous functions, so
there is a disk B with center (a, b) and radius δ > 0 such that fxx(x, y) > 0 and D(x, y) > 0
whenever (x, y) is in B. Therefore, by looking at Equation (), we see that D2

uf(x, y) > 0
whenever (x, y) is in B. This means that if C is the curve obtained by intersecting the graph of
f with the vertical plane through P (a, b, f(a, b)) in the direction of u, then C is concave upward
on an interval of length 2δ. This is true in the direction of every vector u, so if we restrict (x, y)
to lie in B, the graph of f lies above its horizontal tangent plane at P . Thus f(x, y) ≥ f(a, b)
whenever (x, y) is in B. This shows that f(a, b) is a local minimum. �

Note. In Case 3 of Theorem 2, the point is called saddle point.

Example 3. Find the local maximum and minimum values of the saddle points of f(x, y) =
x4 + y4 − 4xy + 1.

Solution. We first locate the critical points:

fx = 4x3 − 4y fy = 4y3 − 4x

To solve these equations, we substitute y = x3 from the first equation into the second one. This
gives

0 = x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1)

so there are three real roots: x = 0, 1,−1. The three critical points are (0, 0), (1, 1) and (−1,−1).

Next we calculate the second partial derivatives and D(x, y):

fxx = 12x2

fxy = −4

fyy = 12y2

D(x, y) = fxxfyy − (fxy)
2 = 144x2y2 − 16

Since D(0, 0) = −16 < 0, by using Second Derivative Test, we conclude that the origin is a
saddle point. We also obtain that D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0, by using Second
Derivative Test, we see that f(1, 1) = −1 is a local minimum. Similarly D(−1,−1) = 128 > 0
and fxx(−1,−1) = 12 > 0,so f(−1,−1) = −1 is also a local minimum.

Example 4. Find the shortest distance from the point (1, 0,−2) to the plane x+ 2y + z = 4.

Solution. The distance from any point (x, y, z) to the point (1, 0,−2) is

d =
√

(x− 1)2 + y2 + (z + 2)2



but if (x, y, z) lies on the plane x + 2y + z = 4, then z = 4 − x − 2y and so we have d =√
(x− 1)2 + y2 + (6− x− 2y)2. We can minimize d by minimizing the simpler expression

d2 = f(x, y) = (x− 1)2 + y2 + (6− x− 2y)2

Then,

fx = 2(x− 1)− 2(6− x− 2y) = 4x+ 4y − 14 = 0

fy = 2y − 4(6− x− 2y) = 4x+ 10y − 24 = 0

we find that the only critical point is
(
11
6
, 5
3

)
. Since fxx = 4, fxy = 4, and fyy = 10, we have

D(x, y) = fxxfyy − (fxy)
2 = 24 > 0 and fxx > 0, so by the Second Derivatives Test, f has a

local minimum at
(
11
6
, 5
3

)
. Intuitively, we can see that this local minimum is actually an absolute

minimum because there must be a point on the given plane that is closest to (1, 0,−2). If x = 11
6

and y = 5
3
, then

d =
√

(x− 1)2 + y2 + (6− x− 2y)2 =

√(
5

6

)2

+

(
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3

)2

+

(
5

6

)2

=
5

6

√
6

The shortest distance from (1, 0,−2) to the plane x+ 2y + z = 4 is
5

6

√
6.

Absolute Maximum and Minimum Values

For function of single variable that is continuous on [a, b], to find absolute maximum and mini-
mum values, we also need to consider the point at the boundary of the domain. This is similar
to function of two variables. Just as a closed interval contains its endpoints, a closed set in R2

is one that contains all its boundary points. [A boundary point of D is a point (a, b) such that
every disk with center (a,b) contains points in D and also points not in D.] For instance, the
disk

D = {(x, y)|x2 + y2 ≤ 1}
which consists of all points on and inside the circle x2+y2 = 1, is a closed set because it contains
all of its boundary points (which are the points on the circle x2 + y2 = 1). But if even one point
on the boundary curve were omitted, the set would not be closed.

A bounded set in R2 is one that is contained within some disk. In other words, it is finite in
extent. Then, in terms of closed and bounded sets, we can state the following counterpart of
the Extreme Value Theorem in two dimensions.

Theorem 3. ( Extreme Value Theorem for Functions of Two Variables) If f is continuous on
a closed, bounded set D in R2, then f attains an absolute maximum value f(x1, y1) and an
absolute minimum value f(x2, y2) at some points and (x1, y1) and (x2, y2) in D.

To find the absolute maximum and minimum values of a continuous function f on a closed,
bounded set D:

(1) Find the values of f at the critical points of f in D.

(2) Find the extreme values of f on the boundary of D.

(3) The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest
of these values is the absolute minimum value.



Example 5. Find the absolute maximum and minimum values of the function f(x, y) =
x2 − 2xy + 2y on the rectangle D = {(x, y)|0 6 x 6 3, 0 6 y 6 2}.

[h]

Solution. Since f is a polynomial, it is continuous on the closed, bounded rectangle D, so
Theorem 3 tells us there is both an absolute maximum and an absolute minimum. We find that
the critical points occur when

fx = 2x− 2y = 0 fy = −2x+ 2 = 0

so the only critical point is (1, 1), and the value of f there is f(1, 1) = 1.

Then, we look at the values of f on the boundary of D, which consists of the four line segments
L1, L2, L3, L4 shown in figure above. On L1, we have y = 0 and

f(x, 0) = x2 0 6 x 6 3

This is an increasing function of x, so its minimum value is f(0, 0) = 0 and its maximum value
is f(3, 0) = 9. On L2 we have x = 3 and

f(3, y) = 9− 4y 0 6 y 6 2

This is a decreasing function of y, so its maximum value is f(3, 0) = 9 and its minimum value
is f(3, 2) = 1. On L3 we have y = 2 and

f(x, 2) = x2 − 4x+ 4 0 6 x 6 3

By observing that f(x, 2) = (x−2)2, we see that the minimum value of this function is f(2, 2) = 0
and the maximum value is f(0, 2) = 4. Finally, on L4 we have x = 0 and

f(0, y) = 2y 0 6 y 6 2

with maximum value f(0, 2) = 4 and minimum value f(0, 0) = 0. Thus, on the boundary, the
minimum value of f is 0 and the maximum is 9.

Then, we compare these values with the value f(1, 1) = 1 at the critical point and conclude
that the absolute maximum value of f on D is f(3, 0) = 9 and the absolute minimum value is
f(0, 0) = f(2, 2) = 0.




