
MAT201 Advance Calculus

Lagrange Multipliers

In the previous lecture, we maximized a volume function V = xyz subject to the constraint
2xz+ 2yz+xy = 12, which expressed the side condition that the surface area was 12 m2 . Now,
we present Lagranges method for maximizing or minimizing a general function f(x, y, z) subject
to a constraint (or side condition) of the form g(x, y, z = k).

Its easier to explain the geometric basis of Lagranges method for functions of two variables.
So we start by trying to find the extreme values of f(x, y) subject to a constraint of the form
g(x, y) = k. In other words, we seek the extreme values of f(x, y) when the point (x, y) is re-
stricted to lie on the level curve g(x, y) = k. Figure below shows this curve together with several
level curves of f . These have the equations f(x, y) = c where c = 7, 8, 9, 10, 11. To maximize
f(x, y) subject to g(x, y) = k is to find the largest value of c such that the level curve f(x, y) = c
intersects g(x, y) = k. It appears from the figure below that this happens when these curves
just touch each other, that is, when they have a common tangent line. (Otherwise, the value of
c could be increased further.) This means that the normal lines at the point (x0, y0) where they
touch are identical. So the gradient vectors are parallel; that is, ∇f(x0, y0) = λ∇g(x0, y0)for
some scalar λ.

This kind of argument also applies to the problem of finding the extreme values of f(x, y, z)
subject to the constraint g(x, y, z) = k. Thus the point (x, y, z) is restricted to lie on the level
surface S with equation g(x, y, z) = k. Instead of the level curves in the figure below, we consider
the level surfaces f(x, y, z) = c and argue that if the maximum value of f is f(x0, y0, z0) = c,
then the level surface f(x, y, z) = c is tangent to the level surface g(x, y, z) = k and so the
corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function f has an extreme
value at a point P (x0, y0, z0) on the surface S and let C be a curve with vector equation r(t) =
〈x(t), y(t), z(t)〉 that lies on S and passes through P . If t0 is the parameter value corresponding
to the point P , then r(t0) = 〈x0, y0, z0〉. The composite function h(t) = f(x(t), y(t), z(t))
represents the values that f takes on the curve C. Since f has an extreme value at (x0, y0, z0),
it follows that h has an extreme value at t0, so h′(t0) = 0. But if f is differentiable, we can use
the Chain Rule to write

2020/2021



0 = h′(t0)

= fx(x0, y0, z0)x
′(t0) + fy(x0, y0, z0)y

′(t0) + fz(x0, y0, z0)z
′(t0)

= ∇f(x0, y0, z0) · r′(t0)
This shows that the gradient vector ∇f(x0, y0, z0) is orthogonal to the tangent vector r′(t0) to
every such curve C. But we already know from previous lectures that the gradient vector of g,
∇g(x0, y0, z0), is also orthogonal to r′(t0) for every such curve. This means that the gradient
vectors ∇f(x0, y0, z0) and ∇g(x0, y0, z0) must be parallel. Therefore, if ∇g(x0, y0, z0) 6= 0, there
is a number λ such that

∆f(x0, y0, z0) = λ∆g(x0, y0, z0)

The symbol λ is called a Lagrange multiplier.

Theorem 1. (Method of Lagrange Multipliers) To find the maximum and minimum values of
f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and
∇g 6= 0 on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and g(x, y, z) = k

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is
the maximum value of f ; the smallest is the minimum value of f .

Let say we write the vector equation ∇f = λg in terms of each of their component, then the
equations in step (a) above become

fx = λgx fy = λgy fz = λgz

Now, we have four equations and four unknowns and we can solve it using any methods that
we are familiar with. It is not necessary to find the value of λ explicitly. The same idea can be
applied to functions of two variables, but instead of four, we will only have three equations.

Example 1. Find the extreme values of the function f(x, y) = x2+2y2 on the circle x2+y2 = 1.

Solution. We are asked for the extreme values of f subject to the constraint g(x, y) = x2 +y2 =
1. Using Lagrange multipliers, we solve the equations ∇f = λ∇g and g(x, y) = 1, which can be
written as

fx = λgx fy = λgy g(x, y) = 1

or as
2x = 2xλ (1)

4y = 2yλ (2)

x2 + y2 = 1 (3)

From (1) we have x = 0 or λ = 1. If x = 0, then (3) gives y = ±1. If λ = 1, then y = 0 from (2),
so then (3) gives x = ±1. Therefore f has possible extreme values at the points (0, 1), (0,−1),
(1, 0), and (−1, 0). Evaluating f at these four points, we find that

f(0, 1) = 2 f(0,−1) = 2 f(1, 0) = 1 f(−1, 0) = 1

Therefore the maximum value of f on the circle x2 + y2 = 1 is f(0,±1) = 2 and the minimum
value is f(±1, 0) = 1.



Example 2. Find the extreme values of f(x, y) = x2 + 2y2 on the disk x2 + y2 6 1.

Solution. When we try to obtain the absolute minimum or maximum, we compare the values
of f at the critical points with values at the points on the boundary. Since fx = 2x and fy = 4y,
the only critical point is (0, 0). We compare the value of f at that point with the extreme values
on the boundary from Example 1:

f(0, 0) = 0 f(±1, 0) = 1 f(0,±1) = 2

Therefore the maximum value of f on the disk x2 + y2 6 1 is f(0,±1) = 2 and the minimum
value is f(0, 0) = 0.

Example 3. Find the points on the sphere x2 + y2 + z2 = 4 that are closest to and farthest
from the point (3, 1,−1).

Solution. The distance from a point (x, y, z) to the point (3, 1,−1) is

d =
√

(x− 3)2 + (y − 1)2 + (z + 1)2

but the algebra is simpler if we instead maximize and minimize the square of the distance:

d2 = f(x, y, z) = (x− 3)2 + (y − 1)2 + (z + 1)2

The constraint is that the point (x, y, z) lies on the sphere, that is,

g(x, y, z) = x2 + y2 + z2 = 4

According to the method of Lagrange multipliers, we solve ∇f = λ∇g, g = 4. This gives

2(x− 3) = 2xλ (4)

2(y − 1) = 2yλ (5)

2(z + 1) = 2zλ (6)

x2 + y2 + z2 = 4 (7)

The simplest way to solve these equations is to solve for x, y, and z in terms of λ from (4), (5),
and (6), and then substitute these values into (7). From (4) we have

x− 3 = xλ or x(1− λ) = 3 or x =
3

1− λ
[Note that 1− λ 6= 0 because λ = 1 is impossible from (12).] Similarly, (5) and (6) give

y =
1

1− λ
z =

1

1− λ
Therefore, from (15), we have

32

(1− λ)2
+

12

(1− λ)2
+

(−1)2

(1− λ)2
= 4

which gives (1− λ)2 = 11
4
, 1− λ = ±

√
11/2, so

λ = 1±
√

11

2

These values of λ then give the corresponding points (x, y, z):(
6√
11
,

2√
11
,− 2√

11

)
and

(
− 6√

11
,− 2√

11
,

2√
11

)
Its easy to see that f has a smaller value at the first of these points, so the closest point is(

6√
11
, 2√

11
,− 2√

11

)
and the farthest is

(
− 6√

11
,− 2√

11
, 2√

11

)
.



Two Constraints

Suppose now that we want to find the maximum and minimum values of a function f(x, y, z)
subject to two constraints of the form g(x, y, z) = k and h(x, y, z) = c. Geometrically, this
means that we are looking for the extreme values of f when (x, y, z) is restricted to lie on the
curve of intersection C of the level surfaces g(x, y, z) = k and h(x, y, z) = c. Suppose f has such
an extreme value at a point P (x0, y0, z0). We know that ∇f is orthogonal to C at P . But we
also know that ∇g is orthogonal to g(x, y, z) = k and ∇h is orthogonal to h(x, y, z) = c, so ∇g
and ∇h are both orthogonal to C. This means that the gradient vector ∇f(x0, y0, z0) is in the
plane determined by ∇g(x0, y0, z0) and ∇h(x0, y0, z0). (Assume that these gradient vectors are
not zero and not parallel.) So, there are numbers λ and µ, such that

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0) (8)

In this case, we will obtain the extreme values by solving five equations with 5 unknowns.

fx = λgx + µhx

fy = λgy + µhy

fz = λgz + µhz

g(x, y, z) = k

h(x, y, z) = c.

Example 4. Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of
intersection of the plane x− y + z = 1 and the cylinder x2 + y2 = 1.

Solution. We maximize the function f(x, y, z) = x + 2y + 3z subject to the constraints
g(x, y, z) = x − y + z = 1 and h(x, y, z) = x2 + y2 = 1. The Lagrange condition is ∇f =
λ∇g + µ∇h, so we solve the equations

1 = λ+ 2xµ (9)

2 = −λ+ 2yµ (10)

3 = λ (11)

x− y + z = 1 (12)

x2 + y2 = 1 (13)

Putting λ = 3 (from (11)) in (9), we get 2xµ = −2, so x = − 1
µ
. Similarly, (10) gives y = 5

2µ
.

Substitution in (13) then gives
1

µ2
+

25

4µ2
= 1

and so µ2 =
29

4
, µ = ±

√
29

2
. Then x = ∓ 2√

29
, y = ± 5√

29
, and , from (12), z = 1 − x + y =

1± 7√
29

. The corresponding values of f are

∓ 2√
29

+ 2

(
± 5√

29

)
+ 3

(
1± 7√

29

)
= 3±

√
29

Therefore the maximum value of f on the given curve is 3 +
√

29.




