
MAT201 Advance Calculus

Volumes and Double Integrals

Consider a function f of two variables defined on a closed rectangle

R = [a, b]× [c, d] = {(x, y) ∈ R2a 6 x 6 b, c 6 y 6 d}
and we first suppose that f(x, y) > 0. The graph of f is a surface with equation z = f(x, y).
Let S be the solid that lies above R and under the graph of f , that is,

S = {(x, y, z) ∈ R3|0 6 z 6 f(x, y), (x, y) ∈ R}

(As in the figure below) Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by dividing
the interval [a, b] into m subintervals [xi−1, xi] of equal width ∆x = (b − a)/m and dividing
[c, d] into n subintervals [yj−1, yj] of equal width ∆y = (d − c)/n By drawing lines parallel to
the coordinate axes through the endpoints of these subintervals, as in figure below, we form the
subrectangles

Rij = [xi−1, xi]× [yj−1, yj] = {(x, y)|xi−1 6 x 6 xi, yj−1 6 y 6 yj}
each with area ∆A = ∆x∆y.

If we choose a sample point (x∗ij, y
∗
ij) in each Rij, then we can approximate the part of S that

lies above each Rij by a thin rectangular box (or column) with base Rij and height f(x∗ij, y
∗
ij)

as shown in figure below. The volume of this box is the height of the box times the area of the
base rectangle:
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f(x∗ij, y
∗
ij)∆A

If we follow this procedure for all the rectangles and add the volumes of the corresponding boxes,
we get an approximation to the total volume of S:

V ≈
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A (1)

(See Figure below) This double sum means that for each subrectangle we evaluate f at the
chosen point and multiply by the area of the subrectangle, and then we add the results.

Our intuition tells us that the approximation given in Equation (1) becomes better as m and n
become larger and so we would expect that

V = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A (2)

We use the expression in Equation (2) to define the volume of the solid S that lies under the
graph of f and above the rectangle R.

Limits of the type that appear in Equation (2) occur frequently, not just in finding volumes but
in a variety of other situations as wellas we will see in incoming lecture, even f when is not a
positive function. So we introduce the following definition.

Definition 1. The double integral of f over the rectangle R is∫ ∫
R

f(x, y)dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A

if this limit exists.



The precise meaning of the limit in Definition 1 is that for every number ε > 0 there is an integer
N such that ∣∣∣∣∣

∫ ∫
R

f(x, y)dA−
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A

∣∣∣∣∣ < ε

for all integers m and n greater than N and for any choice of sample points (x∗ij, y
∗
ij) in Rij.

A function f is called integrable if the limit in Definition 1 exists. It is known that all con-
tinuous functions are integrable. In fact, the double integral of f exists provided that f is not
too discontinuous”. In particular, if f is bounded [that is, there is a constant M such that
|f(x, y)| 6M for all (x, y) in R], and f is continuous there, except on a finite number of smooth
curves, then f is integrable over R.

The sample point (x∗ij, y
∗
ij) can be chosen to be any point in the subrectangle Rij but if we choose

it to be the upper right-hand corner of Rij [namely (xi, yj), see the second figure in this lecture
note], then the expression for double integral looks simpler:

∫ ∫
R

f(x, y)dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(xi, yj)∆A

By comparing Equation (2) and equation in Definition 1, we see that a volume can be written
as a double integral:

If f(x, y) > 0, then the volume V of the solid that lies above the rectangle R and below the
surface z = f(x, y) is

V =

∫ ∫
R

f(x, y)dA

The sum in Definition (1),

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A

is called a double Riemann sum and is used as an approximation to the value of the double
integral. If f happens to be a positive function, then the double Riemann sum represents the
sum of volumes of columns, and is an approximation to the volume under the graph of f and
above the rectangle R.

Example 1. Estimate the volume of the solid that lies above the square R = [0, 2]× [0, 2] and
below the elliptic paraboloid z = 16 − x2 − 2y2. Divide R into four equal squares and choose
the sample point to be the upper right corner of each square Rij. Sketch the solid and the
approximating rectangular boxes.

Solution. The squares are shown in figure below.



The paraboloid is the graph of f(x, y) = 16 − x2 − 2y2 and the area of each square is 1.
Approximating the volume by the Riemann sum with m = n = 2, we have

V ≈
2∑

i=1

2∑
j=1

f(xi, yj)∆A

= f(1, 1)∆A+ f(1, 2)∆A+ f(2, 1)∆A+ f(2, 2)∆A

= 13(1) + 7(1) + 10(1) + 4(1) = 34

This is the volume of the approximating rectangular boxes shown in the following figure.

Example 2. If R = {(x, y| − 1 6 x 6 1,−2 6 y 6 2)}, evaluate the integral∫ ∫
R

√
1− x2dA

Solution. It would be very difficult to evaluate this integral directly from Definition (1) but,
because

√
1− x2 > 0, we can compute the integral by interpreting it as a volume. If z =

√
1− x2,

then x2 + z2 = 1 and z > 0, so the given double integral represents the volume of the solid S
that lies below the circular cylinder x2 + z2 = 1 and above the rectangle R. The volume of S is
the area of a semicircle with radius 1 times the length of the cylinder. Thus∫ ∫

R

√
1− x2dA =

1

2
π(1)2 × 4 = 2π



Midpoint Rule

Recall the methods we used in MAT101 such as Midpoint Rule, Trapezoidal Rule and Simpson’s
Rule. All of them have counterparts in double integral. In this topic, we will consider Midpoint
Rule for double integrals. This means that we use a double Riemann sum to approximate the
double integral, where the sample point (x∗ij, y

∗
ij) in Rij is chosen to be the center (xi, yj) of Rij.

In other words, xi is the midpoint of [xi−1, xi] and is yi is the midpoint of [yi−1, yi]. Then,∫ ∫
R

f(x, y)dA ≈
m∑
i=1

n∑
j=1

f(xi, yj)∆A.

Example 3. Use the Midpoint Rule with m = n = 2 to estimate the value of the integral∫ ∫
R

(x− 3y2)dA, where R = {(x, y)|0 6 x 6 2, 1 6 y 6 2}.

Solution. In using the Midpoint Rule with m = n = 2, we evaluate f(x, y) = x − 3y2 at the

centers of the four subrectangles shown in Figure 10. So x1 =
1

2
, x2 =

3

2
, y1

5

4
, and y2 =

7

4
. The

area of each subrectangle is ∆A =
1

2
. Thus∫ ∫

R

(x− 3y2)dA ≈
2∑

i=1

2∑
j=1

f(xi, yj)∆A

= f(x1, y1)∆A+ f(x1, y2)∆A+ f(x2, y1)∆A+ f(x2, y2)∆A

= f(
1

2
,
5

4
)∆A+ f(

1

2
,
7

4
)∆A+ f(

3

2
,
5

4
)∆A+ f(

3

2
,
7

4
)∆A

= (−67

16
)
1

2
+ (−139

16
)
1

2
+ (−51

16
)
1

2
+ (−123

16
)
1

2

= −95

8
= −11.875

Thus we have ∫ ∫
R

(x− 3y2)dA ≈ −11.875

Average Value

Recall that the average value of a function f of one variable defined on an interval [a, b] is given
as

fave =
1

b− a

∫ b

a

f(x) dx.



We can extend this for double integrals defined on a rectangle R to be

fave =
1

A(R)

∫ ∫
R

f(x, y) dA

where A(R) is the area of R. If f(x, y) ≥ 0, the equation

A(R)× fave =

∫ ∫
R

f(x, y) dA

says that the box with base R and fave height has the same volume as the solid that lies under
the graph of f .

Example 4. The contour map in figure below shows the snowfall, in inches, that fell on the
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle that
measures 388 miles west to east and 276 miles south to north.) Use the contour map to estimate
the average snowfall for the entire state of Colorado on those days.

Solution. Let’s place the origin at the southwest corner of the state. Then 0 ≤ x ≤ 388,
0 ≤ y ≤ 276, and f(x, y) is the snowfall, in inches, at the location x miles to the east and y
miles to the north of the origin. If R is the rectangle that represents Colorado, then the average
snowfall for the state on December 20-21 was

fave =
1

A(R)

∫ ∫
R

f(x, y) dA

where A(R) = 388.276. To estimate the value of this double integral, let’s use Midpoint Rule
with m = n = 4.In other words, we divide R into 16 subrectangles of equal size, as in figure
below. The area of each subrectangle is

∆A =
1

160
(388)(276) = 6693 miles2



Using the contour map to estimate the value of f at the center of each subrectangle, we get

∫ ∫
R

f(x, y) dA ≈
4∑

i=1

4∑
j=1

f(xi, xj) ∆A

≈ ∆A[0 + 15 + 8 + 7 + 2 + 25 + 18.5 + 11 + 4.5 + 28 + 17 + 13.5

+ 12 + 15 + 17.5 + 13]

= (6693)(207)

Therefore,

fave =
(6693)(207)

(388)(276)

We may conclude that on December 20-21, 2006, Colorado received an average of approximately
13 inches of snow.

Properties of Double Integrals

We list here three properties of double integrals that can be proved in the same manner as in
MAT101. We assume that all of the integrals exist. The first two properties below are referred
to as the linearity of the integral.∫ ∫

R

[f(x, y) + g(x, y)] dA =

∫ ∫
R

f(x, y) dA+

∫ ∫
R

g(x, y) dA∫ ∫
R

cf(x, y) dA = c

∫ ∫
R

f(x, y) dA where c is a constant.

If f(x, y) ≥ g(x, y) for all (x, y) in R, then∫ ∫
R

f(x, y) dA ≥
∫ ∫

R

g(x, y) dA.




