
MAT201 Advance Calculus

Iterated Integrals

The evaluation of double integrals from first principles (from the last lecture) is even more dif-
ficult, but in this lecture, we see how to express a double integral as an iterated integral, which
can then be evaluated by calculating two single integrals.

Suppose that f is a function of two variables that is integrable on the rectangle R = [a, b]× [c, d].

We use the notation
∫ d
c
f(x, y) dy to mean that x is held fixed and f(x, y) is integrated with

respect to y from y = c to y = d. This procedure is called partial integration with respect to y.

(Notice its similarity to partial differentiation.) Now
∫ d
c
f(x, y)dy is a number that depends on

the value of x, so it defines a function of x:

A(x) =

∫ d

c

f(x, y) dy

If we now integrate the function A with respect to x from x = a to x = b, we get∫ b

a

A(x) dx =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx (1)

The integral on the right side of Equation 1 is called an iterated integral. Usually the brackets
are omitted. Thus ∫ b

a

∫ d

c

f(x, y) dy dx =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx (2)

means that we first integrate with respect to y from c to d and then with respect to x from b to
b. Similarly, the iterated integral∫ d

c

∫ b

a

f(x, y) dx dy =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy (3)

means that we first integrate with respect to x (holding y fixed) from x = a to x = b and then
we integrate the resulting function of y with respect to y from y = c to y = d. Notice that in
both Equations (2) and (3), we work from the inside out.

Example 1. Evaluate the iterated integrals.

(1)
∫ 3

0

∫ 2

1
x2y dydx

(2)
∫ 2

1

∫ 3

0
x2y dxdy

Solution.

(1) Regarding x as a constant, we obtain∫ 2

1

x2y dy =

[
x2
y2

2

]y=2

y=1

= x2
(

22

2

)
− x2

(
12

2

)
=

3

2
x2
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Thus the function A in the preceding discussion is given by A(x) =
3

2
x2 in this example.

We now integrate this function of x from 0 to 3:∫ 3

0

∫ 2

1

x2y dydx =

∫ 3

0

[∫ 2

1

x2y dy

]
dx

=

∫ 3

0

3

2
x2 dx =

[
x3

2

]3
0

=
27

2

(2) Here we first integrate with respect to x:∫ 2

1

∫ 3

0

x2y dxdy =

∫ 2

1

[∫ 3

0

x2y dx

]
dy =

∫ 2

1

[
x3

3
y

]x=3

x=0

dy

=

∫ 2

1

9y dy = 9

[
y2

2

]2
1

=
27

2

Notice from the example, we get the same value no matter we integrate with respect to x first
or with respect to y first. This is in accord with Fubini’s Theorem.

Theorem 1. Fubini’s Theorem If f is continuous on the rectangle

R = {(x, y)|a 6 x 6 b, c 6 y 6 d},

then ∫ ∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

More generally, this is true if we assume that f is bounded on R, is discontinuous only on a
finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini’s Theorem is excluded from this lecture note since it involves knowledge
from analysis. But we shall give intuition on why the theorem is true for case f(x, y) ≥ 0. Recall
that if f is positive, then we can interpret the double integral

∫ ∫
R
f(x, y) dA as the volume V

of the solid S that lies above R and under the surface z = f(x, y). But we have another formula
that we used for volume in MAT101, namely,

V =

∫ b

a

A(x) dx

where A(x) is the area of a cross-section of in the plane through x perpendicular to the x-
axis. From figure below, we can see that A(x) is the area under the curve C whose equation is
z = f(x, y), where x is held constant and c ≤ y ≤ d. Therefore

A(x) =

∫ d

c

f(x, y)dy

and ∫ ∫
R

f(x, y) dA = V =

∫ b

a

A(x) dx =

∫ b

a

∫ d

c

f(x, y) dy dx



Using similar argument, using cross-sections perpendicular to the y-axis as in figure below, we
have ∫ ∫

R

f(x, y) dA = V =

∫ d

c

∫ b

a

f(x, y) dx dy

Example 2. Evaluate
∫ ∫

R
y sin(xy) dA, where R = [1, 2]× [0, π].

Solution.

(1) If we first integrate with respect to x, we get∫ ∫
R

y sin(xy) dA =

∫ π

0

∫ 2

1

y sin(xy) dxdy =

∫ π

0

[− cos(xy)]x=2
x=1

=

∫ π

0

(− cos 2y + cos y)dy

= −
[

1

2
sin 2y + sin y

]π
0

= 0

(2) If we reverse the order of integration, we get∫ ∫
R

y sin(xy) dA =

∫ 2

1

∫ π

0

y sin(xy) dy dx

To evaluate the inner integral, we use integration by parts with

u = y dv = sin(xy) dy

du = dy v = −cos(xy)

x



and so ∫ π

0

y sin(xy) dy = −
[
y cos(xy)

x

]y=π
y=0

+
1

x

∫ π

0

cos(xy) dy

= −π cos πx

x
+

1

x2
[sin(xy)]y=πy=0

= −π cos πx

x
+

sin πx

x2

If we now integrate the first term by parts with u = −1/x and dv = π cosπx dx, we get

du =
dx

x2
, v = sinπx, and∫ (

−π cos πx

x

)
dx = −sin πx

x
−
∫

sin πx

x2
dx

Therefore ∫ (
−π cos πx

x
+

sin πx

x2

)
dx = −sin πx

x

and so ∫ 2

1

∫ π

0

y sin(xy) dydx =

[
−sin πx

x

]2
1

= −sin 2π

2
+ sin π = 0

In the special case where f(x, y) can be factored as the product of a function of x only and a
function of y only, the double integral of f can be written in a particularly simple form. To be
specific, suppose that f(x, y) = g(x)h(y) and R = [a, b]× [c, d]. Then Fubini’s Theorem gives∫ ∫

R

f(x, y) dA =

∫ d

c

∫ b

a

g(x)h(y) dxdy =

∫ d

c

[∫ b

a

g(x)h(y) dx

]
dy

In the inner integral, y is a constant, so h(y) is a constant and we can write∫ d

c

[∫ b

a

g(x)h(y) dx

]
dy =

∫ d

c

[
h(y)

∫ b

a

g(x) dx

]
dy =

∫ b

a

g(x) dx

∫ d

c

h(y) dy

since
∫ b
a
g(x) dx is a constant. Therefore, in this case, the double integral of f can be written as

the product of two single integrals:

∫ ∫
R

g(x)h(y) dA =

∫ b

a

g(x) dx

∫ d

c

h(y)dy where R = [a, b]× [c, d] (4)

Example 3. Find the volume of the solid S that is bounded by the elliptic paraboloid x2 +
2y2 + z = 16, the planes x = 2 and y = 2, and the three coordinate planes.

Solution. We first observe that S is the solid that lies under the surface z = 16− x2− 2y2 and
above the square R = [0, 2] × [0, 2]. We are now in a position to evaluate the double integral



using Fubini’s Theorem. Therefore

V =

∫ ∫
R

(16− x2 − 2y2) dA =

∫ 2

0

∫ 2

0

(16− x2 − 2y2) dx dy

=

∫ 2

0

[
16x− 1

3
x3 − 2y2x

]x=2

x=0

dy

=

∫ 2

0

(
88

3
− 4y2

)
dy =

[
88

3
y − 4

3
y3
]2
0

= 48

Example 4. If R = [0, π/2]× [0, π/2], then, by Equation (4),
Solution. ∫ ∫

R

sinx cos y dA =

∫ π/2

0

sinx dx

∫ π/2

0

cos y dy

= [− cosx]π/20 [sin y]π/20 = 1 · 1 = 1




