Double Integrals over General Region

In the last class, we learned about iterated integrals and the domain given for x and y is in the form of intervals. So, at most of the time, we can construct the domain, let say R , in the shape of a rectangle. So, what if R is just a general region that can take any shape like circle, or even a random shape as in figure below.

We suppose that D is a bounded region, which means that D can be enclosed in a rectangular region R as in figure below. Then we define a new function F with domain R by

$$
F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}
$$
 (1)

If F is integrable over R, then we define the **double integral of** f **over** D by

$$
\iint\limits_{D} f(x, y) dA = \iint\limits_{R} F(x, y) dA \tag{2}
$$

In the case where $f(x, y) \geq 0$, we can still interpret \iint D $f(x, y)$ dA as the volume of the solid that lies above D and under the surface $z = f(x, y)$ (the graph of f).

If f is continuous on D, then it can be shown that \iint R $F(x, y)$ dA exists and therefore \iint D $f(x, y) dA$ exists (with some exceptions).

A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x , that is,

$$
D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x) \}
$$

where g_1 and g_2 are continuous on [a, b]. Some example of this type can be refer in figures below.

In order to evaluate \iint D $f(x, y)$ dA when D is a region of type I, we choose a rectangle $R =$ $[a, b] \times [c, d]$ that contains D, as in figure below, and we let F be the function given by Equation [\(1\)](#page-0-0); that is, F agrees with f on D and is 0 outside D .

Then, by Fubini's Theorem,

$$
\iint\limits_D f(x,y) dA = \iint\limits_R F(x,y) dA = \int_a^b \int_c^d F(x,y) dy dx
$$

Observe that $F(x, y) = 0$ if $y \le g_1(x)$ or $y \ge g_2(x)$ because (x, y) then lies outside D. Therefore

$$
\int_{c}^{d} F(x, y) dy = \int_{g_1(x)}^{g_2(x)} F(x, y) dy = \int_{g_1(x)}^{g_2(x)} dy
$$

because $F(x, y) = f(x, y)$ when $g_1(x) \le y \le g_2(x)$. Thus we have the following formula that enables us to evaluate the double integral as an iterated integral.

If f is continuous on type I region D such that

$$
D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x) \}
$$

Then

$$
\iint\limits_{D} f(x, y) dA = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx
$$
\n(3)

In the inner integral we regard x as being constant not only in $f(x, y)$ but also in the limits of integration, $g_1(x)$ and $g_2(x)$.

Next, we consider plane regions of type II, which can be expressed as

$$
D = \{(x, y) | c \le y \le d, h_1(y) \le x \le h_2(y) \}
$$
\n⁽⁴⁾

where $h_1(y)$ and $h_2(y)$ are continuous. It can be geometrically interpret as in the following figures.

Similar to type I, we have

$$
\iint\limits_{D} f(x, y) dA = \int_{c}^{d} \int_{h_1(y)}^{h_2(y)} f(x, y) dx dy
$$
 (5)

where D is a type II region given by Equation (4) .

Example 1. Evaluate \int D $(x+2y) dA$, where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

Solution. The parabolas intersect when $2x^2 = 1 + x^2$, that is, $x^2 = 1$, so $x = \pm 1$. We note that the region D, sketched in figure below, is a type I region but not a type II region.

We can write

$$
D = \{(x, y) | -1 \le x \le 1, 2x^2 \le y \le 1 + x^2\}
$$

Since the lower boundary is $y = 2x^2$ and the upper boundary is $y = 1 + x^2$, Equation [\(3\)](#page-2-1) gives

$$
\iint_{D} (x + 2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x + 2y) dy dx
$$

\n
$$
= \int_{-1}^{1} [xy + y^{2}]_{y=2x^{2}}^{y=1+x^{2}} dx
$$

\n
$$
= \int_{-1}^{1} [x(1 + x^{2}) + (1 + x^{2})^{2} - x(2x^{2}) - (2x^{2})^{2}] dx
$$

\n
$$
= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx
$$

\n
$$
= \left[-3\frac{x^{5}}{5} - \frac{x^{4}}{4} + 2\frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right]_{-1}^{1} = \frac{32}{15}
$$

Note 1. We can see that it is essential to draw a diagram. Often it is helpful to draw a vertical arrow as in figure in the previous example. Then the limits of integration for the inner integral can be read from the diagram as follows: The arrow starts at the lower boundary $y = g_1(x)$, which gives the lower limit in the integral, and the arrow ends at the upper boundary $y = g_2(x)$, which gives the upper limit of integration. For a type II region the arrow is drawn horizontally from the left boundary to the right boundary.

Example 2. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region D in the xy-plane bounded by the line $y = 2x$ and the parabola $y = x^2$.

Solution. We shall provide two solutions for this question. The first one consider D as type I region, while the second one as type II region.

(1) First, we will consider D to be type I region.

We can write ${\cal D}$ as

$$
D = \{(x, y) | 0 \leqslant x \leqslant 2, x^2 \leqslant y \leqslant 2x\}
$$

Therefore the volume under $z = x^2 + y^2$ and above D is

$$
V = \iint_D (x^2 + y^2) dA = \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) dy dx
$$

= $\int_0^2 \left[x^2 y + \frac{y^3}{3} \right]_{y=x^2}^{y=2x} dx = \int_0^2 \left[x^2 (2x) + \frac{(2x)^3}{3} - x^2 x^2 - \frac{(x^2)^3}{3} \right] dx$
= $\int_0^2 \left(-\frac{x^6}{3} - x^4 + \frac{14x^3}{3} \right) dx = \left[\frac{x^7}{21} - \frac{x^5}{5} + \frac{7x^4}{6} \right]_0^2 = \frac{216}{35}$

(2) For this solution, we consider D to be type II region.

We see that \boldsymbol{D} can also be written as:

$$
D = \{(x, y) | 0 \leqslant y \leqslant 4, \frac{1}{2}y \leqslant x \leqslant \sqrt{y}\}
$$

Therefore another expression for ${\cal V}$ is

$$
V = \iint_D (x^2 + y^2) dA = \int_0^4 \int_{(1/2)y}^{\sqrt{y}} (x^2 + y^2) dx dy
$$

=
$$
\int_0^4 \left[\frac{x^3}{3} + y^2 x \right]_{x=(1/2)y}^{x=\sqrt{y}} dy = \int_0^4 \left(\frac{y^{3/2}}{3} + y^{5/2} - \frac{y^3}{24} - \frac{y^3}{2} \right) dy
$$

=
$$
\left[\frac{2}{15} y^{5/2} + \frac{2}{7} y^{7/2} - \frac{13}{96} y^4 \right]_0^4 = \frac{216}{35}
$$

Example 3. Evaluate \iint D $xy dA$ where D is the region bounded by the line $y = x - 1$ and the parabola $y^2 = 2x + 6$.

Solution. The region D is shown in figure below.

Again D is both type I and type II, but the description of D as a type I region is more complicated because the lower boundary consists of two parts. Therefore we prefer to express D as a type II region:

$$
D = \{(x, y) | -2 \leq y \leq 4, \frac{1}{2}y^2 - 3 \leq x \leq y + 1\}
$$

Then Equation [\(5\)](#page-2-2) gives

$$
\iint_{D} xy dA = \int_{-2}^{4} \int_{(1/2)y^{2}+3}^{y+1} xy dx dy = \int_{-2}^{4} \left[\frac{x^{2}}{2} y \right]_{x=(1/2)y^{2}+3}^{x=y+1} dy
$$

$$
= \frac{1}{2} \int_{-2}^{4} y \left[(y+1)^{2} - (\frac{1}{2}y^{2} - 3)^{2} \right] dy
$$

$$
= \frac{1}{2} \int_{-2}^{4} \left(-\frac{y^{5}}{4} + 4y^{3} + 2y^{2} - 8y \right) dy
$$

$$
= \frac{1}{2} \left[-\frac{y^{6}}{24} + y^{4} + 2\frac{y^{3}}{3} - 4y^{2} \right]_{-2}^{4} = 36
$$

If we had expressed D as a type I region using figure on the left above, then we would have obtained

$$
\iint\limits_{D} xy \, dA = \int_{-3}^{-1} \int_{-\sqrt{2x+6}}^{\sqrt{2x+6}} xy \, dy \, dx + \int_{-1}^{5} \int_{x-1}^{\sqrt{2x+6}} xy \, dy \, dx
$$

but this would have involved more work than the other method.

Example 4. Find the volume of the tetrahedron bounded by the planes $x + 2y + z = 2$, $x = 2y$, $x = 0$, and $z = 0$.

Solution. In a question such as this, its wise to draw two diagrams: one of the three dimensional solid and another of the plane region D over which it lies. Figure below shows the tetrahedron T bounded by the coordinate planes $x = 0$, $z = 0$, the vertical plane $x = 2y$, and the plane $x + 2y + z = 2.$

Since the plane $x + 2y + z = 2$ intersects the xy-plane (whose equation is $z = 0$) in the line $x + 2y = 2$, we see that T lies above the triangular region D in the xy-plane bounded by the lines $x = 2y$, $x + 2y = 2$, and $x = 0$. This can be geometrically represented as in the following figure.

The plane $x + 2y + z = 2$ can be written as $z = 2 - x - 2y$, so the required volume lies under the graph of the function $z = 2 - x - 2y$ and above

$$
D = \{(x, y) | 0 \le x \le 1, \frac{x}{2} \le y \le 1 - \frac{x}{2}\}\
$$

Therefore

$$
V = \iint_D (2 - x - 2y) dA = \int_0^1 \int_{x/2}^{1-x/2} (2 - x - 2y) dy dx
$$

=
$$
\int_0^1 [2y - xy - y^2]_{y=x/2}^{y=1-x/2} dx
$$

=
$$
\int_0^1 \left[2 - x - x\left(1 - \frac{x}{2}\right) - \left(1 - \frac{x}{2}\right)^2 - x + \frac{x^2}{2} + \frac{x^2}{4}\right] dx
$$

=
$$
\int_0^1 (x^2 - 2x + 1) dx = \left[\frac{x^3}{3} - x^2 + x\right]_0^1 = \frac{1}{3}
$$

Example 5. Evaluate the iterated integral $\int_0^1 \int_x^1 \sin(y^2) dy dx$.

Solution. If we try to evaluate the integral as it stands, we are faced with the task of first evaluating $\int \sin(y^2) dy$. But its impossible to do so in finite terms since $\int \sin(y^2) dy$ is not an elementary function. So we must change the order of integration. This is accomplished by first expressing the given iterated integral as a double integral. Using Equation [\(3\)](#page-2-1) backward, we have

$$
\int_0^1 \int_x^1 \sin(y^2) \, dy \, dx = \iint_D \sin(y^2) \, dA
$$

where

$$
D = \{(x, y) | 0 \leqslant x \leqslant 1, x \leqslant y \leqslant 1\}
$$

We can sketch this region D in the figure on the left below.

Then from figure on the right, we see that an alternative description of D is

$$
D = \{(x, y) | 0 \leqslant y \leqslant 1, 0 \leqslant x \leqslant y\}
$$

This enables us to use Equation [\(5\)](#page-2-2) to express the double integral as an iterated integral in the reverse order:

$$
\int_0^1 \int_x^1 \sin(y^2) \, dy \, dx = \iint_D \sin(y^2) \, dA
$$

=
$$
\int_0^1 \int_0^y \sin(y^2) \, dx \, dy = \int_0^1 \left[x \sin(y^2) \right]_{x=0}^{x=y} \, dy
$$

=
$$
\int_0^1 y \sin(y^2) \, dy = -\left[\frac{1}{2} \cos(y^2) \right]_0^1
$$

=
$$
\frac{1}{2} (1 - \cos 1)
$$

Properties of Double Integrals

We assume that all of the following integrals exist. The first three properties of double integrals over a region D follow immediately from the knowledge on multiple integrals.

$$
\iint\limits_{D} [f(x,y) + g(x,y)] dA = \iint\limits_{D} f(x,y) dA + \iint\limits_{D} g(x,y) dA \tag{6}
$$

$$
\iint\limits_{D} cf(x, y) dA = \iint\limits_{D} f(x, y) dA \tag{7}
$$

If $f(x, y) \ge g(x, y)$ for all (x, y) in D, then

$$
\iint\limits_{D} f(x, y) dA \ge \iint\limits_{D} g(x, y) dA \tag{8}
$$

The next property of double integrals is similar to the property of single integrals given by the equation $\int_a^b f(x) dx = \int_a^c f(x, y) dA + \int_c^b f(x, y) dx$. Consider $D = D_1 \bigcup D_2$, where D_1 and D_2 dont overlap except perhaps on their boundaries as in figure below.

Then

$$
\iint\limits_{D} f(x, y) dA = \iint\limits_{D_1} f(x, y) dA + \iint\limits_{D_2} f(x, y) dA
$$
 (9)

Property [9](#page-8-0) can be used to evaluate double integrals over regions that are neither type I nor type II but can be expressed as a union of regions of type I or type II. Figure below illustrates this procedure.

The next property of integrals says that if we integrate the constant function $f(x, y) = 1$ over a region D , we get the area of D :

$$
\iiint\limits_{D} 1 dA = A(D) \tag{10}
$$

Figure below illustrates why Equation (10) is true: A solid cylinder whose base is D and whose height is 1 has volume $A(D)$. $1 = A(D)$, but we know that we can also write its volume as $\iint 1 dA$. D

Finally, combining Equations [\(6\)](#page-7-0), [\(8\)](#page-7-1), [\(10\)](#page-8-1), we can prove the following property:

If
$$
n \le f(x, y) \le M
$$
 for all (x, y) in *D*, then
\n
$$
mA(D) \le \iint_D f(x, y) dA \le MA(D)
$$
\n(11)

Example 6. Use Property [11](#page-9-0) to estimate the integral \iint D $e^{\sin x \cos y} dA$, where D is the disk with center the origin and radius 2.

Solution. Since $-1 \le \sin x \le 1$ and $-1 \le \cos y \le 1$, we have $-1 \le \sin x \cos y \le 1$ and therefore $e^{-1} \leqslant e^{\sin x \cos y} \leqslant e^1 = e$

Thus, using $m = e^{-1} = 1/e$, $M = e$, and $A(D)\pi(2)^2$ in Property 11, we obtain

$$
\frac{4\pi}{e} \leqslant \iint\limits_{D} e^{\sin x \cos y} \, dA \leqslant 4\pi e
$$