
MAT201 Advance Calculus

Double Integrals over General Region

In the last class, we learned about iterated integrals and the domain given for x and y is in the
form of intervals. So, at most of the time, we can construct the domain, let say R, in the shape
of a rectangle. So, what if R is just a general region that can take any shape like circle, or even
a random shape as in figure below.

We suppose that D is a bounded region, which means that D can be enclosed in a rectangular
region R as in figure below. Then we define a new function F with domain R by

F (x, y) =

{
f(x, y) if (x, y) is in D

0 if (x, y) is in R but not in D
(1)

If F is integrable over R, then we define the double integral of f over D byx

D

f(x, y) dA =
x

R

F (x, y) dA (2)

In the case where f(x, y) ≥ 0, we can still interpret
s
D

f(x, y) dA as the volume of the solid that

lies above D and under the surface z = f(x, y) (the graph of f).
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If f is continuous on D, then it can be shown that
s
R

F (x, y) dA exists and therefore
s
D

f(x, y) dA

exists (with some exceptions).

A plane region D is said to be of type I if it lies between the graphs of two continuous functions
of x, that is,

D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
where g1 and g2 are continuous on [a, b]. Some example of this type can be refer in figures below.

In order to evaluate
s
D

f(x, y) dA when D is a region of type I, we choose a rectangle R =

[a, b]× [c, d] that contains D, as in figure below, and we let F be the function given by Equation
(1); that is, F agrees with f on D and is 0 outside D.



Then, by Fubini’s Theorem,

x

D

f(x, y) dA =
x

R

F (x, y) dA =

∫ b

a

∫ d

c

F (x, y) dy dx

Observe that F (x, y) = 0 if y ≤ g1(x) or y ≥ g2(x) because (x, y) then lies outside D. Therefore∫ d

c

F (x, y) dy =

∫ g2(x)

g1(x)

F (x, y) dy =

∫ g2(x)

g1(x)

dy

because F (x, y) = f(x, y) when g1(x) ≤ y ≤ g2(x). Thus we have the following formula that
enables us to evaluate the double integral as an iterated integral.

If f is continuous on type I region D such that

D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
Then x

D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx (3)

In the inner integral we regard x as being constant not only in f(x, y) but also in the limits of
integration, g1(x) and g2(x).

Next, we consider plane regions of type II, which can be expressed as

D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)} (4)

where h1(y) and h2(y) are continuous. It can be geometrically interpret as in the following
figures.

Similar to type I, we have

x

D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy (5)



where D is a type II region given by Equation (4).

Example 1. Evaluate
s
D

(x+ 2y) dA, where D is the region bounded by the parabolas y = 2x2

and y = 1 + x2.

Solution. The parabolas intersect when 2x2 = 1 + x2, that is,x2 = 1, so x = ±1. We note that
the region D, sketched in figure below, is a type I region but not a type II region.

We can write

D = {(x, y)| − 1 6 x 6 1, 2x2 6 y 6 1 + x2}

Since the lower boundary is y = 2x2 and the upper boundary is y = 1 + x2, Equation (3) gives

x

D

(x+ 2y) dA =

∫ 1

−1

∫ 1+x2

2x2

(x+ 2y) dy dx

=

∫ 1

−1

[
xy + y2

]y=1+x2

y=2x2 dx

=

∫ 1

−1
[x(1 + x2) + (1 + x2)2 − x(2x2)− (2x2)2] dx

=

∫ 1

−1
(−3x4 − x3 + 2x2 + x+ 1) dx

=

[
−3

x5

5
− x4

4
+ 2

x3

3
+
x2

2
+ x

]1
−1

=
32

15

Note 1. We can see that it is essential to draw a diagram. Often it is helpful to draw a vertical
arrow as in figure in the previous example. Then the limits of integration for the inner integral
can be read from the diagram as follows: The arrow starts at the lower boundary y = g1(x),
which gives the lower limit in the integral, and the arrow ends at the upper boundary y = g2(x),
which gives the upper limit of integration. For a type II region the arrow is drawn horizontally
from the left boundary to the right boundary.

Example 2. Find the volume of the solid that lies under the paraboloid z = x2 + y2 and above
the region D in the xy-plane bounded by the line y = 2x and the parabola y = x2.

Solution. We shall provide two solutions for this question. The first one consider D as type I
region, while the second one as type II region.

(1) First, we will consider D to be type I region.



We can write D as

D = {(x, y)|0 6 x 6 2, x2 6 y 6 2x}

Therefore the volume under z = x2 + y2 and above D is

V =
x

D

(x2 + y2) dA =

∫ 2

0

∫ 2x

x2

(x2 + y2) dy dx

=

∫ 2

0

[
x2y +

y3

3

]y=2x

y=x2

dx =

∫ 2

0

[
x2(2x) +

(2x)3

3
− x2x2 − (x2)3

3

]
dx

=

∫ 2

0

(
−x

6

3
− x4 +

14x3

3

)
dx =

[
x7

21
− x5

5
+

7x4

6

]2
0

=
216

35

(2) For this solution, we consider D to be type II region.

We see that D can also be written as:

D = {(x, y)|0 6 y 6 4,
1

2
y 6 x 6

√
y}

Therefore another expression for V is

V =
x

D

(x2 + y2) dA =

∫ 4

0

∫ √y
(1/2)y

(x2 + y2) dx dy

=

∫ 4

0

[
x3

3
+ y2x

]x=√y
x=(1/2)y

dy =

∫ 4

0

(
y3/2

3
+ y5/2 − y3

24
− y3

2

)
dy

=

[
2

15
y5/2 +

2

7
y7/2 − 13

96
y4
]4
0

=
216

35



Example 3. Evaluate
s
D

xy dA where D is the region bounded by the line y = x − 1 and the

parabola y2 = 2x+ 6.

Solution. The region D is shown in figure below.

AgainD is both type I and type II, but the description ofD as a type I region is more complicated
because the lower boundary consists of two parts. Therefore we prefer to express D as a type
II region:

D = {(x, y)| − 2 6 y 6 4,
1

2
y2 − 3 6 x 6 y + 1}

Then Equation (5) gives

x

D

xy dA =

∫ 4

−2

∫ y+1

(1/2)y2+3

xy dx dy =

∫ 4

−2

[
x2

2
y

]x=y+1

x=(1/2)y2+3

dy

=
1

2

∫ 4

−2
y

[
(y + 1)2 − (

1

2
y2 − 3)2

]
dy

=
1

2

∫ 4

−2

(
−y

5

4
+ 4y3 + 2y2 − 8y

)
dy

=
1

2

[
−y

6

24
+ y4 + 2

y3

3
− 4y2

]4
−2

= 36

If we had expressed D as a type I region using figure on the left above, then we would have
obtained

x

D

xy dA =

∫ −1
−3

∫ √2x+6

−
√
2x+6

xy dy dx+

∫ 5

−1

∫ √2x+6

x−1
xy dy dx

but this would have involved more work than the other method.

Example 4. Find the volume of the tetrahedron bounded by the planes x+ 2y+ z = 2, x = 2y,
x = 0, and z = 0.

Solution. In a question such as this, its wise to draw two diagrams: one of the three dimensional
solid and another of the plane region D over which it lies. Figure below shows the tetrahedron
T bounded by the coordinate planes x = 0, z = 0, the vertical plane x = 2y, and the plane
x+ 2y + z = 2.



Since the plane x + 2y + z = 2 intersects the xy-plane (whose equation is z = 0) in the line
x + 2y = 2, we see that T lies above the triangular region D in the xy-plane bounded by the
lines x = 2y, x + 2y = 2, and x = 0. This can be geometrically represented as in the following
figure.

The plane x + 2y + z = 2 can be written as z = 2 − x − 2y, so the required volume lies under
the graph of the function z = 2− x− 2y and above

D = {(x, y)|0 6 x 6 1,
x

2
6 y 6 1− x

2
}

Therefore

V =
x

D

(2− x− 2y) dA =

∫ 1

0

∫ 1−x/2

x/2

(2− x− 2y) dy dx

=

∫ 1

0

[
2y − xy − y2

]y=1−x/2
y=x/2

dx

=

∫ 1

0

[
2− x− x

(
1− x

2

)
−
(

1− x

2

)2
− x+

x2

2
+
x2

4

]
dx

=

∫ 1

0

(x2 − 2x+ 1) dx =

[
x3

3
− x2 + x

]1
0

=
1

3

Example 5. Evaluate the iterated integral
∫ 1

0

∫ 1

x
sin(y2) dy dx.

Solution. If we try to evaluate the integral as it stands, we are faced with the task of first
evaluating

∫
sin(y2) dy. But its impossible to do so in finite terms since

∫
sin(y2) dy is not an

elementary function. So we must change the order of integration. This is accomplished by first
expressing the given iterated integral as a double integral. Using Equation (3) backward, we



have ∫ 1

0

∫ 1

x

sin(y2) dy dx =
x

D

sin(y2) dA

where
D = {(x, y)|0 6 x 6 1, x 6 y 6 1}

We can sketch this region D in the figure on the left below.

Then from figure on the right, we see that an alternative description of D is

D = {(x, y)|0 6 y 6 1, 0 6 x 6 y}
This enables us to use Equation (5) to express the double integral as an iterated integral in the
reverse order: ∫ 1

0

∫ 1

x

sin(y2) dy dx =
x

D

sin(y2) dA

=

∫ 1

0

∫ y

0

sin(y2) dx dy =

∫ 1

0

[
x sin(y2)

]x=y

x=0
dy

=

∫ 1

0

y sin(y2) dy = −
[

1

2
cos(y2)

]1
0

=
1

2
(1− cos 1)

Properties of Double Integrals

We assume that all of the following integrals exist. The first three properties of double integrals
over a region D follow immediately from the knowledge on multiple integrals.

x

D

[f(x, y) + g(x, y)] dA =
x

D

f(x, y) dA+
x

D

g(x, y) dA (6)

x

D

cf(x, y) dA =
x

D

f(x, y) dA (7)

If f(x, y) ≥ g(x, y) for all (x, y) in D, thenx

D

f(x, y) dA ≥
x

D

g(x, y) dA (8)

The next property of double integrals is similar to the property of single integrals given by the

equation
∫ b

a
f(x) dx =

∫ c

a
f(x, y) dA +

∫ b

c
f(x, y) dx. Consider D = D1

⋃
D2, where D1 and D2

dont overlap except perhaps on their boundaries as in figure below.



Then x

D

f(x, y) dA =
x

D1

f(x, y) dA+
x

D2

f(x, y) dA (9)

Property 9 can be used to evaluate double integrals over regions that are neither type I nor type
II but can be expressed as a union of regions of type I or type II. Figure below illustrates this
procedure.

The next property of integrals says that if we integrate the constant function f(x, y) = 1 over a
region D, we get the area of D:

x

D

1 dA = A(D) (10)

Figure below illustrates why Equation (10) is true: A solid cylinder whose base is D and whose
height is 1 has volume A(D).1 = A(D), but we know that we can also write its volume as

s
D

1 dA.



Finally, combining Equations (6), (8), (10), we can prove the following property:

If n ≤ f(x, y) ≤M for all (x, y) in D, then

mA(D) ≤
x

D

f(x, y) dA ≤MA(D) (11)

Example 6. Use Property 11 to estimate the integral
s
D

esinx cos y dA, where D is the disk with

center the origin and radius 2.

Solution. Since −1 6 sinx 6 1 and −1 6 cos y 6 1, we have −1 6 sinx cos y 6 1 and therefore

e−1 6 esinx cos y 6 e1 = e

Thus, using m = e−1 = 1/e, M = e, and A(D)π(2)2 in Property 11, we obtain

4π

e
6
x

D

esinx cos y dA 6 4πe




