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Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral
s
R

f(x, y) dA, where R is one of the regions shown in

Figure 1. In either case the description of R in terms of rectangular coordinates is rather complicated but
R is easily described using polar coordinates.

Figure 1. Region that best described using polar coordinates

Figure 2. Relation between x and y with r and θ

Recall from Figure 2 that the polar coordinates (r, θ) of a point are related to the rectangular coordinates
(x, y) by the equations

r2 = x2 + y2 x = r cos θ y = r sin θ

The regions in Figure 1 are special cases of a polar rectangle

R = {(r, θ)|a ≤ r ≤ b, α ≤ θ ≤ β}
as shown in Figure 3. In order to compute the double integral

s
R

f(x, y) dA, where R is a polar rectangle,

we divide the interval [a, b] into m subintervals of equal width ∆r = (b− a)/m and we divide the interval
[α, β] into n subintervals [θj−1, θj] of equal width ∆θ = (β − α)/n. Then the circles r = ri and the rays
θ = θj divide the polar rectangle R into the small polar rectangles shown in Figure 4.
The ”center” (from the idea of midpoint) of the polar subrectangle

Rij = {(r, θ)|ri−1 ≤ r ≤ ri, θj−1 ≤ θθj}
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Figure 3. Polar rectangle

Figure 4. Polar subrectangles

has polar coordinates

r∗i =
1

2
(ri−1 + ri) θ∗j =

1

2
(θj−1 − θj)

We compute the area of Rij using the fact that the area of a sector of a circle with radius r and central
angle θ is 1

2
r2θ. Subtracting the areas of two such sectors, each of which has central angle ∆θ = θj − θj−1,

we find that the area of Rij is

∆Ai =
1

2
r2i∆θ −

1

2
r2i−1∆θ =

1

2
(r2i − r2i−1)∆θ

=
1

2
(ri − ri−1)(ri + ri−1)∆θ = r∗i∆r∆θ

Although we have defined the double integral
s
R

f(x, y) dA in terms of ordinary rectangles, it can be shown

that, for continuous functions f , we always obtain the same answer using polar rectangles. The rectangular
coordinates of the center of Rij are (r∗i cos θ∗j , r

∗
i sin θ∗j ), so a typical Riemann sum is

m∑
i=1

n∑
j=1

f(r∗i cos θ∗j , r
∗
i sin θ∗j )∆Ai =

m∑
i=1

n∑
j=1

f(r∗i cos θ∗j , r
∗
i sin θ∗j )r

∗
i∆r∆θ (1)

If we write g(r, θ) = rf(r cos θ, r sin θ), then the Riemann sum in Equation (1) can be written as
m∑
i=1

n∑
j=1

g(r∗i , theta
∗
j)∆r∆θ

which is a Riemann sum for the double integral∫ β

α

∫ b

a

g(r, θ) dr dθ



Therefore,

x

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(r∗i cos θ∗j , r
∗
i sin θ∗j )∆Ai

= lim
m,n→∞

m∑
i=1

n∑
j=1

g(r∗i , theta
∗
j)∆r∆θ =

∫ β

α

∫ b

a

g(r, θ) dr dθ

=

∫ β

α

∫ b

a

f(r cos θ, r sin θ)r dr dθ

So, we have the following theorem to change to polar coordinates in a double integral

Theorem 1. If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β, where
0 ≤ β − α ≤ 2π, then

x

R

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ

The formula in Theorem 1 says that we convert from rectangular to polar coordinates in a double integral
by writing x = r cos θ and y = r sin θ, using the appropriate limits of integration for r and θ, and replacing
dA by r dr dθ. Be careful not to forget the additional factor r on the right side of Formula in Theorem 1.
A classical method for remembering this is shown in Figure 5, where the infinitesimal polar rectangle can
be thought of as an ordinary rectangle with dimensions r dθ and dr and therefore has area dA = r dr dθ.

Figure 5. Infinitesimal polar rectangle

Example 1. Evaluate
∫ ∫

R
(3x + 4y2) dA, where R is the region in the upper half-plane bounded by the

circles x2 + y2 = 1 and x2 + y2 = 4.

Solution. The region R can be described as

R = {(x, y)|y > 0, 1 6 x2 + y2 6 4}



It is the half-ring shown in Figure 2, and in polar coordinates it is given by 1 6 r 6 2, 0 6 θ 6 π.
Therefore, by formula in Theorem 1,∫ ∫

R

(3x+ 4y2) dA =

∫ π

0

∫ 2

1

(3r cos θ + 4r2 sin2 θ) r dr dθ

=

∫ π

0

∫ 2

1

(3r2 cos θ + 4r3 sin2 θ) dr dθ

=

∫ π

0

[
r3 cos θ + r4 sin2 θ

]r=2

r=1
dθ =

∫ π

0

(7 cos θ + 15 sin2 θ) dθ

=

∫ π

0

[
7 cos θ +

15

2
(1− cos 2θ)

]
dθ

=

[
7 sin θ +

15θ

2
− 15

4
sin 2θ

]π
0

=
15π

2

Example 2. Find the volume of the solid bounded by the plane z = 0 and the paraboloid z = 1−x2− y2.

Solution. If we put z = 0 in the equation of the paraboloid, we get x2 + y2 = 1. This means that the
plane intersects the paraboloid in the circle x2 + y2 = 1, so the solid lies under the paraboloid and above
the circular disk D given by x2 + y2 6 1. In polar coordinates D is given by 0 6 r 6 1, 0 6 θ 6 2π. Since
1− x2 − y2 = 1− r2, the volume is

V =

∫ ∫
D

(1− x2 − y2) dA =

∫ 2π

0

∫ 1

0

(1− r2) r dr dθ

=

∫ 2π

0

dθ

∫ 1

0

(r − r3) dr = 2π

[
r2

2
− r4

4

]1
0

=
π

2

If we had used rectangular coordinates instead of polar coordinates, then we would have obtained

V =

∫ ∫
D

(1− x2 − y2) dA =

∫ 1

−1

∫ √1−x2
−
√
1−x2

(1− x2 − y2) dy dx

which is not easy to evaluate because it involves finding
∫

(1− x2)3/2 dx.

What we have done so far can be extended to the more complicated type of region shown in Figure 6.

Figure 6. Region enclosed

Its similar to the type II rectangular regions considered in double integral over general region. In fact,
by combining formula in Theorem 1 in this section with for type II rectangular regions, we obtain the
following formula.



Theorem 2. If f is continuous on a polar region of the form

D = {(r, θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}
then, x

D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ) r dr dθ

In particular, taking f(x, y) = 1, h1(θ) = 0, and h2(θ) = h(θ) in this formula, we see that the area of the
region D bounded by θ = α, θ = β, and r = h(θ) is

A(D) =
x

D

1 dA =

∫ β

α

∫ h(θ)

0

r dr dθ

=

∫ β

α

[
r2

0

]h
(θ)0 dθ =

∫ β

α

1

2
[h(θ)]2 dθ

Example 3. Use a double integral to find the area enclosed by one loop of the four-leaved rose r = cos 2θ.

Figure 7. Sketch of the enclosed area

Solution. From the sketch of the curve in Figure 7, we see that a loop is given by the region

D = {(r, θ)| − π/4 6 θ 6 π/4, 0 6 r 6 cos 2θ}
So the area is

A(D) =

∫ ∫
D

dA =

∫ π/4

−π/4

∫ cos 2θ

0

r dr dθ

=

∫ π/4

−π/4

[
1

2
r2
]cos 2θ
0

dθ =
1

2

∫ π/4

−π/4
cos2 2θ dθ

=
1

4

∫ π/4

−π/4
(1 + cos 4θ) dθ =

1

4

[
θ +

1

4
sin 4θ

]π/4
−π/4

=
π

8

Example 4. Find the volume of the solid that lies under the paraboloid z = x2 + y2,above the xy-plane,
and inside the cylinder x2 + y2 = 2x.

Solution. The solid lies above the disk D whose boundary circle has equation x2 + y2 = 2x or, after
completing the square,

(x− 1)2 + y2 = 1

In polar coordinates we have x2 + y2 = r2 and x = r cos θ, so the boundary circle becomes r2 = 2r cos θ,
or r = 2 cos θ (See figures below).



Thus the disk D is given by

D = {(r, θ)| − π/2 6 θ 6 π/2, 0 6 r 6 2 cos θ}
and, by Formula 3, we have

V =

∫ ∫
D

(x2 + y2) dA =

∫ π/2

−π/2

∫ 2 cos θ

0

r2r dr dθ =

∫ π/2

−π/2

[
r4

4

]2 cos θ
0

dθ

= 4

∫ π/2

−π/2
cos4 θ dθ = 8

∫ π/2

0

cos4 θ dθ = 8

∫ π/2

0

(
1 + cos 2θ

2

)2

dθ

= 2

∫ π/2

0

[
1 + 2 cos 2θ +

1

2
(1 + cos 4θ)

]
dθ

= 2

[
3

2
θ + sin 2θ +

1

8
sin 4θ

]π/2
0

= 2

(
3

2

)(π
2

)
=

3π

2




