MAT201 ApvaNCE CALCULUS 2020/2021

Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral [ f(z,y)dA, where R is one of the regions shown in
R

Figure 1. In either case the description of R in terms of rectangular coordinates is rather complicated but
R is easily described using polar coordinates.
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FIGURE 1. Region that best described using polar coordinates
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F1GURE 2. Relation between x and y with r and 6

Recall from Figure 2 that the polar coordinates (r, 6) of a point are related to the rectangular coordinates
(x,y) by the equations

r? =2 + 9 x =rcost y =rsinf

The regions in Figure 1 are special cases of a polar rectangle

R={(r,0)la<r<ba<b<p}
as shown in Figure 3. In order to compute the double integral [[ f(z,y) dA, where R is a polar rectangle,
we divide the interval [a, b] into m subintervals of equal width ﬁr = (b —a)/m and we divide the interval
la, 5] into n subintervals [#;_1,0;] of equal width Af = (5 — «)/n. Then the circles r = r; and the rays

¢ = 0; divide the polar rectangle R into the small polar rectangles shown in Figure 4.
The ”center” (from the idea of midpoint) of the polar subrectangle

Rij = {(r,0)lriy <7 <y 00 < 00}
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F1GURE 3. Polar rectangle

FI1GURE 4. Polar subrectangles

has polar coordinates

ri =griatr) 05 =50 - 0;)
We compute the area of R;; using the fact that the area of a sector of a circle with radius r and central
angle 6 is %7"2(9. Subtracting the areas of two such sectors, each of which has central angle A0 = 0; — 6;_;,

we find that the area of R;; is
1
2

= §(T@ - 7“@'71)(7“1' +7ri—1)A0 = ri ArAf

AA; = —r2A0 flAQ— —(r2 —r? ))AG

Although we have defined the double integral [[ f(z,y)dA in terms of ordinary rectangles, it can be shown

R
that, for continuous functions f, we always obtain the same answer using polar rectangles. The rectangular

coordinates of the center of R;; are (r} cos 6}, r; sinf7), so a typical Riemann sum is

ZZf ricos ;i sin07)AA; = ZZf ri cos 07,1y sin 07 )ri ArA¢ (1)
i=1 j=1 i=1 j=1

If we write g(r,0) = rf(rcos@,rsinf), then the Riemann sum in Equation (1) can be written as

ZZg ri, theta;) ArAf

=1 j=1

which is a Riemann sum for the double integral
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Therefore,

jf flz,y)dA = m’lir_rgoo i i f(ricos0,r;sinf;)AA;

R i=1 j=1

m n B b
= lim_ >N gl thetal) ArAg = /a / g(r,0) drdf

i=1 j=1

B b
—//f(rcos@,rsin@)rdrd@

So, we have the following theorem to change to polar coordinates in a double integral

Theorem 1. If f is continuous on a polar rectangle R given by 0 < a < r < bya < 0 < 3, where
0<pB—a<2r, then

fff(x,y)d/l: /ﬁ/bf(TCOSQ,TSiHQ)TdeQ

R

The formula in Theorem 1 says that we convert from rectangular to polar coordinates in a double integral
by writing x = r cos§ and y = rsin 6, using the appropriate limits of integration for  and 6, and replacing
dA by rdrdf. Be careful not to forget the additional factor r on the right side of Formula in Theorem 1.
A classical method for remembering this is shown in Figure 5, where the infinitesimal polar rectangle can
be thought of as an ordinary rectangle with dimensions r df and dr and therefore has area dA = r dr df.
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FIGURE 5. Infinitesimal polar rectangle

Example 1. Evaluate [ [,(3z + 4y*) dA, where R is the region in the upper half-plane bounded by the
circles 22 + > = 1 and 22 + 3% = 4.

Solution. The region R can be described as

R={(z,y)ly > 0,1 <2”+y* <4}



It is the half-ring shown in Figure 2, and in polar coordinates it is given by 1 < r < 2, 0 < 0 < 7.
Therefore, by formula in Theorem 1,
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Example 2. Find the volume of the solid bounded by the plane z = 0 and the paraboloid z = 1 — 22 — ¢2.

Solution. If we put z = 0 in the equation of the paraboloid, we get 22 + > = 1. This means that the
plane intersects the paraboloid in the circle 22 + y* = 1, so the solid lies under the paraboloid and above
the cnrcular disk D glven by 22 + 3% < 1. In polar coordlnates Disgiven by 0 <r < 1,0 <6 <27 Since
1 — 22 —9y*=1-—r2 the volume is

27
// 1—:c —y )dA = / / 1—7’ rdrdf
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—/ dﬁ/ r—r’ dT_QWlE_Z]O_E

If we had used rectangular coordinates instead of polar coordinates, then we would have obtained

Vi—z?
// (1—2*—9*)dA = // (1—2* =9 dydx

which is not easy to evaluate because it involves finding [(1 — 2?)*/? dz.

What we have done so far can be extended to the more complicated type of region shown in Figure 6.
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F1GURE 6. Region enclosed

Its similar to the type II rectangular regions considered in double integral over general region. In fact,
by combining formula in Theorem 1 in this section with for type II rectangular regions, we obtain the
following formula.



Theorem 2. If f is continuous on a polar region of the form
D ={(r.0)la<0 <8 h(0) <r<h(0)}

then,
B rha(0)
ff(m,y)dA:/ / f(rcosf,rsind)rdrdd
D a Jhi(9)
In particular, taking f(z,y) = 1, hy(0) = 0, and h2(9) = h(0) in this formula, we see that the area of the
region D bounded by 8 = «, 6 = 3, and r =

h(6)
fldA // rdrdo

:/j [gjr(e))ode:/a %[h(@)]%ze

Example 3. Use a double integral to find the area enclosed by one loop of the four-leaved rose r = cos 26.
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FIGURE 7. Sketch of the enclosed area

Solution. From the sketch of the curve in Figure 7, we see that a loop is given by the region
D ={(r,0)] — /4 <0 <7/4,0 <r < cos20}

cos 20
// dA = / / rdrdf
—7/4

1 cos 260 1 /4
:/ {—rﬂ df = —/ cos? 20 df
—m/4 2 0 2 —7/4

1 [ 1, 1 e
:—/ (1+cos46)df = — [9+—sin49} =
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So the area is

oo 3

Example 4. Find the volume of the solid that lies under the paraboloid z = 2% + y?,above the zy-plane,
and inside the cylinder 22 + y? = 2z.

Solution.  The solid lies above the disk D whose boundary circle has equation x? + y? = 2z or, after
completing the square,

(z—1)2+y* =1
In polar coordinates we have 22 + 32 = r? and o = r cos, so the boundary circle becomes r? = 2r cos 6,
or r = 2cosf (See figures below).
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Thus the disk D is given by

D ={(r,0)] —m/2 <0 <7/2,0<r<2cosb}
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and, by Formula 3, we have
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