MAT201 ADVANCE CALCULUS 2020/2021

Change of Variables in Double Integrals

In one-dimensional calculus we often use a change of variable (a substitution) to simplify an
integral. By reversing the roles of and , we can write the Substitution Rule (4.5.5 in textbook)

/f da:—/f (1)

where = g(u) and a = g(c¢),b = g(d). Another way of writing Formula 1 is as follows:

/f da:—/f —du (2)

A change of variables can also be useful in double integrals. We have already seen one example of
this: conversion to polar coordinates. The new variables r and 6 are related to the old variables
x and y by the equations

x =rcosf y =rsinf

and the change of variables formula (15.3.2 in textbook) can be written as

//Rf(x,ymA://Sf(rcose,rsme)rdrdg

where S is the region in the rf-plane that corresponds to the region R in the zy-plane.

More generally, we consider a change of variables that is given by a transformation 7' from
the uv-plane to the xy-plane:

T(u,v) = (x,y)
where z and y are related to v and v by the equations
T = g(ua U) Y= h(uv U) (3)

or, as we sometimes write,
r = z(u,v) y =y(u,v)

We usually assume that 7" is a C! transformation, which means that ¢ and h have continuous
first-order partial derivatives.

A transformation 7 is really just a function whose domain and range are both subsets of R2.
If T = (uy,v1) = (21,v1), then the point (z1,y;) is called the image of the point (uj,v;). If
no two points have the same image,T" is called one-to-one. Figure 1 shows the effect of a
transformation 7" on a region S in the uv-plane.T" transforms S into a region R in the xy-plane
called the image of S, consisting of the images of all points in S.
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If T is a one-to-one transformation, then it has an inverse transformation 7! from the
xy-plane to the uv-plane and it may be possible to solve Equations 3 for u and v in terms of x
and y:

u=G(z,y) v=H(zy)

Example 1. A transformation is defined by the equations

r=u®—° Yy = 2uv

Find the image of the square S = {(u,v)[0 <u < 1,0 < v < 1}
Solution. The transformation maps the boundary of S into the boundary of the image. So we

begin by finding the images of the sides of S. The first side, Sy, is given by v = 0(0 < u < 1).
See Figure below.)
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From the given equations we have x = u%,y = 0, and so 0 < < 1. Thus S; is mapped into the
line segment from (0,0) to (1,0) in the zy-plane. The second side, Sy is u = 1(0 < v < 1) and,
putting v = 1 in the given equations, we get

r=1-—1v°

Eliminating v, we obtain

2
le—z 0<zr<l1 (4)

which is part of a parabola. Similarly, S3 is given by v = 1(0 < uw < 1), whose image is the
parabolic arc
y?

r=" -1 ~1<2<0 (5)

Finally,S, is given by u = 0(0 < v < 1) whose image is z = —v?, y = 0, that is,—1 < x < 0.
(Notice that as we move around the square in the counterclockwise direction, we also move
around the parabolic region in the counterclockwise direction.) The image of S is the region R
(shown in figure above) bounded by the z-axis and the parabolas given by Equations 4 and 5.

Now let’s see how a change of variables affects a double integral. We start with a small rectangle

S in the uv-plane whose lower left corner is the point (ug, vg) and whose dimensions are Au and
Av.

U=1Uu,
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The image of S is a region R in the xy-plane, one of whose boundary points is (zq, yo) = T (ug, vo)-
The vector

r(u,v) = g(u, v)i+ h(u,v);]
is the position vector of the image of the point (u,v). The equation of the lower side ofS is

v = vy, whose image curve is given by the vector function r(u, vg). The tangent vector at (xq, yo)
to this image curve is

Oxr. Oy
u — Yu ) i+ h, , j=—1+ -3
ry = Gu(to, vo)i+ hy(uo, vo)j 8u1+ 5
Similarly, the tangent vector at (xg,yo) to the image curve of the left side of S (namely,u = ug)
is
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We can approximate the image region R = T'(S) by a parallelogram determined by the secant

vectors

r, = gv(u07 UO)i + hv(u0> /UO)j =

a = r(up + Au, vg) — r(uo, vo) b = r(uo, vo + Av) — r(uo, vo)

shown in figure below.
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But
o~ lim r(ug + Au, vg) — r(ug, vo)
Au—0 Au
and so
r(up + Au, vg) — r(ug, vo) =~ Aur,
Similarly

r(ug, vo + Av) — r(ug,v9) =~ Avr,

This means that we can approximate R by a parallelogram determined by the vectors Aur,
and Avr,. (See Figure 5.) Therefore we can approximate the area of R by the area of this
parallelogram, which, from Section 12.4, is

|(Aur,) X (Avr,)| = |r, X r,| AuAv (6)
Computing the cross product, we obtain
L s I o oo
r, XTI, = |5 3—3 Ozg_g %‘k:% %‘k
dz 9y v v du  Ov
ov  Ov

The determinant that arises in this calculation is called the Jacobian of the transformation and
is given a special notation.

Definition 1. The Jacobian of the transformation 7" given by = = g(u,v) and y = h(u,v) is

owy) |2 % ooy owoy
Ou,v)  |5L 52| Oudv  Ovou
With this notation we can use Equation 6 to give an approximation to the area AA of R:
A~ | 25| A yan (7)
O(u,v)




where the Jacobian is evaluated at (ug, vy).

Next we divide a region S in the uv-plane into rectangles S;; and call their images in the zy-
plane R;;. (See figure below)

U Ya

ij

Au

Applying the approximation (8) to each R;; we approximate the double integral of f over R as
follows:

//Rf(:c,y) dA =~ ijzn:f(xi’yj)AA

i=1 j=1

~ D> flaluvg) hlui v;)) ‘ggj z;

i=1 j=1

Au Av

where the Jacobian is evaluated at (u;,v;). Notice that this double sum is a Riemann sum for

the integral
[ [ atu ot | 550

The foregoing argument suggests that the following theorem is true.

du dv

Theorem 1. Suppose that T is a C* transformation whose Jacobian is nonzero and that maps
a region S in the uv-plane onto a region R in the xy-plane. Suppose that [ is continuous on R
and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except
perhaps on the boundary of S. Then

O(z,y)

[ [ r@maa= [ [ sat.son 508

Theorem 1 says that we change from an integral in x and y to an integral in v and v by expressing
x and y in terms of v and v and writing

du dv (8)

0
aA = 289 g g,
O(u,v)
Notice the similarity between Theorem 9 and the one-dimensional formula in Equation ?77.

O(z,y)
I(u,v)|

dx
Instead of the derivative T we have the absolute value of the Jacobian, that is,
u




As a first illustration of Theorem 1, we show that the formula for integration in polar coordinates
is just a special case. Here the transformation 7" from the rf-plane to the xy-plane is given by

x=g(r,0) =rcosf y = h(r,0) =rsind

and the geometry of the transformation is shown in Figure 7 below.

Y
=5
18 | M R
r=a S r=b
at———
1 eme
| |
0 a b J
[ '
VA
o0=8/ N or=b
R \
/"G _
o
S _
/B o 98
ol O »
0 X
FIGURE 7

The polar coordinate transformation

T maps an ordinary rectangle in the rf-plane to a polar rectangle in the ry-plane. The Jacobian
of T is

o(z, Oz Oz —rqi
(z,y) = gg g = CF)SG rsin g =rcos’f+rsin?0=r>0
o(r,0) 5= o sinf rcosd

Thus Theorem 1 gives

//Rf(x,y)dxdyz//qf(rcos&,rsin@)'g((i:g;‘drd@

B b
:/ /f(rcos&,rsin&)rdrd&

which is the same as Formula 15.3.2 in our textbook.

Example 2. Use the change of variables = u® — v?, y = 2uv to evaluate the integral [ fR ydA

, where R is the region bounded by the z-axis and the parabolas y*> = 4 — 4z and y* = 4 + 4x,
y=0.



Solution. The region R is pictured in Figure 2 (on page 1094). In Example 1 we discovered
that T'(S) = R, where S is the square [0, 1] x [0,1]. Indeed, the reason for making the change
of variables to evaluate the integral is that S is a much simpler region than R. First we need to
compute the Jacobian:

Ul = qu + 402 >0
Therefore, by Theorem 1,

//ydA //QUU ‘dA // (2uv)4(u® + v*) du dv
1 1540

=8 uv—i—uv Ydudv =8 —utv 4+ =u*v dv
4 2 w0

—/ (2v—|—4v)dv:[v —1—12}0—2

0

Note: Example 2 was not a very difficult problem to solve because we were given a suitable
change of variables. If we are not supplied with a transformation, then the first step is to think
of an appropriate change of variables. If f(x,y) is difficult to integrate, then the form of f(z,y)
may suggest a transformation. If the region of integration R is awkward, then the transformation
should be chosen so that the corresponding S region in the uv-plane has a convenient description.

Example 3. Evaluate the integral [ [ R e@tv)/(@=Y) dA where R is the trapezoidal region with
vertices (1,0), (2,0), (0,—2), and (0. — 1).

Solution. Since it isn’t easy to integrate e(**¥/(®=¥) we make a change of variables suggested
by the form of this function:

u=x+y v=r—y (9)
These equations define a transformation 7! from the xy-plane to the uv-plane. Theorem 9

talks about a transformation 7' from the wwv-plane to the xy-plane. It is obtained by solving
Equations 10 for x and y:

1 1
x:§(u+v) yzé(u—v) (10)
The Jacobian of T is
ox,y) 921 |1/2 1/2
d(u,v) 3 g_ 1?2 —1//2 =-1/2

To find the region S in the uv-plane Correspondmg to R, we note that the sides of R lie on the
lines

y=10 T—y=2 x=0 r—y=1

and, from either Equations 10 or Equations 11, the image lines in the uwv-plane are

U= v =2 U= —0 v=1

Thus the region S is the trapezoidal region with vertices (1,1), (2,2), (—2,2), and (—1, 1) shown
in figure below.
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