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Change of Variables in Double Integrals

In one-dimensional calculus we often use a change of variable (a substitution) to simplify an
integral. By reversing the roles of and , we can write the Substitution Rule (4.5.5 in textbook)
as

∫ b

a

f(x) dx =

∫ d

c

f(g(u))g′(u) du (1)

where x = g(u) and a = g(c),b = g(d). Another way of writing Formula 1 is as follows:

∫ b

a

f(x) dx =

∫ d

c

f(x(u))
dx

du
du (2)

A change of variables can also be useful in double integrals. We have already seen one example of
this: conversion to polar coordinates. The new variables r and θ are related to the old variables
x and y by the equations

x = r cos θ y = r sin θ

and the change of variables formula (15.3.2 in textbook) can be written as∫ ∫
R

f(x, y) dA =

∫ ∫
S

f(r cos θ, r sin θ)r dr dθ

where S is the region in the rθ-plane that corresponds to the region R in the xy-plane.

More generally, we consider a change of variables that is given by a transformation T from
the uv-plane to the xy-plane:

T (u, v) = (x, y)

where x and y are related to u and v by the equations

x = g(u, v) y = h(u, v) (3)

or, as we sometimes write,

x = x(u, v) y = y(u, v)

We usually assume that T is a C1 transformation, which means that g and h have continuous
first-order partial derivatives.

A transformation T is really just a function whose domain and range are both subsets of R2.
If T = (u1, v1) = (x1, y1), then the point (x1, y1) is called the image of the point (u1, v1). If
no two points have the same image,T is called one-to-one. Figure 1 shows the effect of a
transformation T on a region S in the uv-plane.T transforms S into a region R in the xy-plane
called the image of S, consisting of the images of all points in S.



If T is a one-to-one transformation, then it has an inverse transformation T−1 from the
xy-plane to the uv-plane and it may be possible to solve Equations 3 for u and v in terms of x
and y:

u = G(x, y) v = H(x, y)

Example 1. A transformation is defined by the equations

x = u2 − v2 y = 2uv

Find the image of the square S = {(u, v)|0 6 u 6 1, 0 6 v 6 1}.

Solution. The transformation maps the boundary of S into the boundary of the image. So we
begin by finding the images of the sides of S. The first side, S1, is given by v = 0(0 6 u 6 1).
See Figure below.)



From the given equations we have x = u2,y = 0, and so 0 6 x 6 1. Thus S1 is mapped into the
line segment from (0, 0) to (1, 0) in the xy-plane. The second side, S2 is u = 1(0 6 v 6 1) and,
putting u = 1 in the given equations, we get

x = 1− v2 y = 2v

Eliminating v, we obtain

x = 1− y2

4
0 6 x 6 1 (4)

which is part of a parabola. Similarly, S3 is given by v = 1(0 6 u 6 1), whose image is the
parabolic arc

x =
y2

4
− 1 − 1 6 x 6 0 (5)

Finally,S4 is given by u = 0(0 6 v 6 1) whose image is x = −v2, y = 0, that is,−1 6 x 6 0.
(Notice that as we move around the square in the counterclockwise direction, we also move
around the parabolic region in the counterclockwise direction.) The image of S is the region R
(shown in figure above) bounded by the x-axis and the parabolas given by Equations 4 and 5.

Now let’s see how a change of variables affects a double integral. We start with a small rectangle
S in the uv-plane whose lower left corner is the point (u0, v0) and whose dimensions are ∆u and
∆v.

The image of S is a region R in the xy-plane, one of whose boundary points is (x0, y0) = T (u0, v0).
The vector

r(u, v) = g(u, v)i + h(u, v)j

is the position vector of the image of the point (u, v). The equation of the lower side ofS is
v = v0, whose image curve is given by the vector function r(u, v0). The tangent vector at (x0, y0)
to this image curve is

ru = gu(u0, v0)i + hu(u0, v0)j =
∂x

∂u
i +

∂y

∂u
j

Similarly, the tangent vector at (x0, y0) to the image curve of the left side of S (namely,u = u0)
is



rv = gv(u0, v0)i + hv(u0, v0)j =
∂x

∂v
i +

∂y

∂v
j

We can approximate the image region R = T (S) by a parallelogram determined by the secant
vectors

a = r(u0 + ∆u, v0)− r(u0, v0) b = r(u0, v0 + ∆v)− r(u0, v0)

shown in figure below.

But

ru = lim
∆u→0

r(u0 + ∆u, v0)− r(u0, v0)

∆u
and so

r(u0 + ∆u, v0)− r(u0, v0) ≈ ∆u ru

Similarly

r(u0, v0 + ∆v)− r(u0, v0) ≈ ∆v rv

This means that we can approximate R by a parallelogram determined by the vectors ∆u ru
and ∆v rv. (See Figure 5.) Therefore we can approximate the area of R by the area of this
parallelogram, which, from Section 12.4, is

|(∆u ru)× (∆v rv)| = |ru × rv|∆u∆v (6)

Computing the cross product, we obtain

ru × rv =

∣∣∣∣∣∣
i j k
∂x
∂u

∂y
∂u

0
∂x
∂v

∂y
∂v

0

∣∣∣∣∣∣ =

∣∣∣∣∂x∂u ∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣k =

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣k
The determinant that arises in this calculation is called the Jacobian of the transformation and
is given a special notation.

Definition 1. The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

With this notation we can use Equation 6 to give an approximation to the area ∆A of R:

∆A ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v (7)



where the Jacobian is evaluated at (u0, v0).

Next we divide a region S in the uv-plane into rectangles Sij and call their images in the xy-
plane Rij. (See figure below)

Applying the approximation (8) to each Rij we approximate the double integral of f over R as
follows:

∫ ∫
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(xi, yj)∆A

≈
m∑
i=1

n∑
j=1

f(g(ui, vj), h(ui, vj))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v

where the Jacobian is evaluated at (ui, vj). Notice that this double sum is a Riemann sum for
the integral ∫ ∫

S

f(g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
The foregoing argument suggests that the following theorem is true.

Theorem 1. Suppose that T is a C1 transformation whose Jacobian is nonzero and that maps
a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R
and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except
perhaps on the boundary of S. Then∫ ∫

R

f(x, y) dA =

∫ ∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv (8)

Theorem 1 says that we change from an integral in x and y to an integral in u and v by expressing
x and y in terms of u and v and writing

dA =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
Notice the similarity between Theorem 9 and the one-dimensional formula in Equation ??.

Instead of the derivative
dx

du
, we have the absolute value of the Jacobian, that is,

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣.



As a first illustration of Theorem 1, we show that the formula for integration in polar coordinates
is just a special case. Here the transformation T from the rθ-plane to the xy-plane is given by

x = g(r, θ) = r cos θ y = h(r, θ) = r sin θ

and the geometry of the transformation is shown in Figure 7 below.

T maps an ordinary rectangle in the rθ-plane to a polar rectangle in the xy-plane. The Jacobian
of T is

∂(x, y)

∂(r, θ)
=

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r > 0

Thus Theorem 1 gives

∫ ∫
R

f(x, y) dx dy =

∫ ∫
S

f(r cos θ, r sin θ)

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ dr dθ
=

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ

which is the same as Formula 15.3.2 in our textbook.

Example 2. Use the change of variables x = u2−v2, y = 2uv to evaluate the integral
∫ ∫

R
y dA

, where R is the region bounded by the x-axis and the parabolas y2 = 4− 4x and y2 = 4 + 4x,
y > 0 .



Solution. The region R is pictured in Figure 2 (on page 1094). In Example 1 we discovered
that T (S) = R, where S is the square [0, 1] × [0, 1]. Indeed, the reason for making the change
of variables to evaluate the integral is that S is a much simpler region than R. First we need to
compute the Jacobian:

∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣2u −2v
2v 2u

∣∣∣∣ = 4u2 + 4v2 > 0

Therefore, by Theorem 1,∫ ∫
R

y dA =

∫ ∫
S

2uv

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ dA =

∫ 1

0

∫ 1

0

(2uv)4(u2 + v2) du dv

= 8

∫ 1

0

∫ 1

0

(u3v + uv3) du dv = 8

∫ 1

0

[
1

4
u4v +

1

2
u2v3

]u=1

u=0

dv

=

∫ 1

0

(2v + 4v3) dv =
[
v2 + v4

]1
0

= 2

Note: Example 2 was not a very difficult problem to solve because we were given a suitable
change of variables. If we are not supplied with a transformation, then the first step is to think
of an appropriate change of variables. If f(x, y) is difficult to integrate, then the form of f(x, y)
may suggest a transformation. If the region of integration R is awkward, then the transformation
should be chosen so that the corresponding S region in the uv-plane has a convenient description.

Example 3. Evaluate the integral
∫ ∫

R
e(x+y)/(x−y) dA, where R is the trapezoidal region with

vertices (1, 0), (2, 0), (0,−2), and (0.− 1).

Solution. Since it isn’t easy to integrate e(x+y)/(x−y), we make a change of variables suggested
by the form of this function:

u = x+ y v = x− y (9)

These equations define a transformation T−1 from the xy-plane to the uv-plane. Theorem 9
talks about a transformation T from the uv-plane to the xy-plane. It is obtained by solving
Equations 10 for x and y:

x =
1

2
(u+ v) y =

1

2
(u− v) (10)

The Jacobian of T is

∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣1/2 1/2
1/2 −1/2

∣∣∣∣ = −1/2

To find the region S in the uv-plane corresponding to R, we note that the sides of R lie on the
lines

y = 0 x− y = 2 x = 0 x− y = 1

and, from either Equations 10 or Equations 11, the image lines in the uv-plane are

u = v v = 2 u = −v v = 1

Thus the region S is the trapezoidal region with vertices (1, 1), (2, 2), (−2, 2), and (−1, 1) shown
in figure below.



Since
S = {(u, v)|1 6 v 6 2,−v 6 u 6 v}

Theorem 1 gives∫ ∫
R

e(x+y)/(x−y) dA =

∫ ∫
S

eu/v
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
=

∫ 2

1

∫ v

−v
eu/v

(
1

2

)
du dv =

1

2

[
veu/v

]u=v

u=−v dv

=
1

2

∫ 2

1

(e− e−1)v dv =
3

4
(e− e−1)


