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Triple Integrals

We have defined single integrals for functions of one variable and double integrals for functions
of two variables, so we can define triple integrals for functions of three variables.
Let’s first deal with the simplest case where f is defined on a rectangular box:

B = {(x, y, z)|a ≤ x ≤ b, r ≤ z ≤ s} (1)

The first step is to divide B into sub-boxes. We do this by dividing the interval [a, b] into l
subintervals [xi–1, xi] of equal width ∆x, dividing [c, d] into m subintervals of width ∆y, and
dividing [r, s] into n subintervals of width ∆z.

The planes through the endpoint of these subintervals parallel to the coordinate planes divide
the box B into lmn sub-boxes

Bijk = [xi−1, xi]× [yj−1, yj]× [zk−1, zk]

as shown in the following figures:

Each sub-box has volume ∆V = ∆x∆y∆z. Then we form the triple Riemann sum

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗ijk, y
∗
ijk, z

∗
ijk)∆V (2)

where the sample point (x∗ijk, y
∗
ijk, z

∗
ijk) is in Bijk.



By analogy with the definition of a double integral, we define the triple integral as the limit of
the triple Riemann sums in 2.

Definition 1. The triple integral of f over the box B is

∫ ∫ ∫
B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗ijk, y
∗
ijk, z

∗
ijk)∆V

Again, the triple integral always exists if f is continuous. We can choose the sample point to be
any point in the sub-box, but if we choose it to be the point (xi, yj, zk), we get a simpler looking
expression for the triple integral

∫ ∫ ∫
B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(xi, yj, zk)∆V

Just as for double integrals, the practical method for evaluating triple integrals is to express
them as iterated integrals as follows.

Theorem 1. Fubini’s Theorem for Triple Integrals If f is continuous on the rectangular box
B = [a, b]× [c, d]× [r, s], then

∫ ∫ ∫
B

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dx dy dz

The iterated integral on the right side of Fubini’s Theorem means that we integrate first with
respect to x (keeping y and z fixed), then z fixed), and finally we integrate with respect to z.

There are five other possible orders in which we can integrate, all of which give the same value.
For instance, if we integrate with respect to y, then z, and then x, we have

∫ ∫ ∫
B

f(x, y, z) dV =

∫ b

a

∫ s

r

∫ d

c

f(x, y, z) dy dz dx

Example 1. Evaluate the triple integral
∫ ∫ ∫

B
xyz2 dV where B is the rectangular box given

by

B = (x, y, z)|0 ≤ x ≤ 1,−1 ≤ y ≤ 2, 0 ≤ z ≤ 3

Solution. We could use any of the six possible orders of integration.

If we choose to integrate with respect to x, then y, and then z, we obtain



∫ ∫ ∫
B

xyz2 dV =

∫ 3

0

∫
−

12

∫ 1

0

xyz2 dx dy dz

=

∫ 3

0

∫ 2

−1

[
x2yz2

2

]x=1

x=0

dy dz

=

∫ 3

0

∫ 2

−1

yz2

2
dy dz

=

∫ 3

0

[
y2z2

4

]y=2

y=−1
dz

=

∫ 3

0

3z2

4
dz

=
z3

4

]
=

27

4

Now we define the triple integral over a general bounded region E in three-dimensional
space (a solid) by much the same procedure that we used for double integrals.

We enclose E in a box B of the type given by Equation 1. Then we define F so that it agrees
with f on E but is 0 for points in B that are outside E.

By definition, ∫ ∫ ∫
E

f(x, y, z) dV =

∫ ∫ ∫
B

F (x, y, z) dV

This integral exist if f is continuous and the boundary of E is ”reasonably smooth”. The triple
integral has essentially the same properties as the double integral. We restrict our attention to
continuous functions f and to certain simple types of regions.

A solid region E is said to be of type 1 if it lies between the graphs of two continuous functions
of x and y, that is,

E = {(x, y, z)|(x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)} (3)

where D is the projection of E onto the xy-plane as shown in the following figure.



Notice that the upper boundary of the solid E is the surface with equation z = u2(x, y), while
the lower boundary is the surface z = u1(x, y).

By the same sort of argument, it can be shown that if E is a type 1 region given by Equation
3, then ∫ ∫ ∫

E

f(x, y, z) dV =

∫ ∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA (4)

The meaning of the inner integral on the right side of Equation 4 is that x and y are held fixed,
and therefore u1(x, y) and u2(x, y) are regarded as constants, while f(x, y, z) is integrated with
respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in figure
below).

Then E = {(x, y, z)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)} and Equation 4
becomes ∫ ∫ ∫

E

f(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)

f(x, y, z) dz dy dx (5)

If, on the other hand, D is a type II plane region (as in figure below), then E = {(x, y, z)|c ≤
y ≤ d, h1(y) ≤ x ≤ h2(y), u1(x, y) ≤ z ≤ u2(x, y)} and Equation 4 becomes∫ ∫ ∫

E

f(x, y, z) dV =

∫ d

c

∫ h2(y)

h1(y)

∫ u2(x,y)

u1(x,y)

f(x, y, z) dz dx dy (6)

A solid region E is of type 2 if it is of the form

E = {(x, y, z)|(y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)}



where, this time, D is the projection of E onto the yz-plane (See figure below).

The back surface is x = u1(y, z), the front surface is x = u2(y, z), and we have

∫ ∫ ∫
E

f(x, y, z) dV =

∫ ∫
D

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA (7)

Finally, a type 3 region is of the form

E = {(x, y, z)|(x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}

where D is the projection of E onto the xz-plane, y = u1(x, z) is the left surface, and y = u2(x, z)
is the right surface (see figure below).

For this type of region we have

∫ ∫ ∫
E

f(x, y, z) dV =

∫ ∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA (8)

In each of Equations 7 and 8 there may be two possible expressions for the integral depending
on whether D is a type I or type II plane region (and corresponding to Equations 5 and 6).

Application of Triple Integrals



We know that if f(x) ≥ 0, then the single integral ]intbaf(x) dx represents the area under the
curve y = f(x) from a to b, and of f(x, y) ≥ 0, then the double integral

∫ ∫
D
f(x, y) dA repre-

sents the volume under the surface z = f(x, y) and above D.

The corresponding interpretation of a triple integral
∫ ∫ ∫

E
f(x, y, z) dV , where f(x, y, z) ≥ 0, is

not very useful because it would be hyper volume” of a four-dimensional object and, of course,
that is very difficult to visualize.

Nonetheless, the triple integral
∫ ∫ ∫

E
f(x, y, z) dV can be interpreted in different ways in dif-

ferent physical situations, depending on the physical interpretations of x, y, z and f(x, y, z).

For example, a special case where f(x, y, z) = 1 for all points in E. Then, the triple integral
does represent the volume of E:

V (E) =

∫ ∫ ∫
E

dV (9)

You can see this in the case of type 1 region by putting f(x, y, z) = 1 in Formula 4:∫ ∫ ∫
E

1 dV =

∫ ∫
D

[∫ u2x,y dz

u1(x,y)

]
dA =

∫ ∫
D

[u2x, y − u1(x, y)] dA

and we know this represents the volume that lies between the surfaces z = u1(x, y) and z =
u2(x, y).


