

MAT201 ADVANCED CALCULUS

<u>Home</u> / My courses / <u>MAT201 ADVANCED CALCULUS</u>

Announcements	Your progress ?
3 SEPTEMBER - 9 SEPTEMBER	
Syllabus	
MAT201 Tutorial Registration	
10 SEPTEMBER - 16 SEPTEMBER	
Lecture 1 (updated)	
Minor corrections	
Line 3 of the solution of Example 6.8.7: should be sin pi instead of sin 0.	
Line 1 of the solution of Example 6.8.10: the sign of the two infinity should be intercahanged.	
Lecture 2	
17 SEPTEMBER - 23 SEPTEMBER	
Lecture 3	
Lecture 4.	
Very minor typo: k should be n in the solution of Example 11.1.2.	
Problem Set 1	
Lecture 5	
<u>24 SEPTEMBER - 30 SEPTEMBER</u>	
Problem Set 1 Solution	
Restricted Available from 29 September 2018	
Lecture 6	

	In Definition 11.1.21, add the sentence	
	"It is monotonic iff it is either increasing or decreasing."	
	In Example 11.1.25, it should be $3/(n+6) < 3/(n+5)$.	
	Lecture 7	
	Minor correction: In the solution (a) of Example 11.1.30, a few symbols for "greater than" are changed to the symbols for "greater or equal to".	than
	Lecture 8	
	Correction: The geometric series before Definition 11.2.1 should sum to 1, instead of 2. This is because a=1/2 (instead of a=1).	
	Problem Set 2	
	Problem 5(c): x should be n.	
	Troblem 3(c). A should be in.	
<u>1 C</u>	OCTOBER - 7 OCTOBER	
	Lecture 9	
	Minor changes to Example 11.2.120 are highlighted in the updated version.	
	Lecture 10	
	Problem Set 3	
	Lecture 11	
	page 4 line 7: The lower bound of the improper integral next to 1/[2(11)^2] should be 11, instead of 10.	
	page 4 me 7. The lower board of the improper integral next to 1/(2(11)-2) should be 11, instead of 10.	
	OCTORER OCTORER	
<u>8 (</u>	OCTOBER - 14 OCTOBER	
	Optional Assessment for Enrichment 1	
	Restricted Available from 1 January 2003	
	Lecture 12	
	Lecture 13	
	Lecture 14.	
	Solution to Problem Set 3	
	Restricted Available from 12 October 2018, 12:00 PM	
	Problem Set 4	
	Restricted Available until 8 October 2018, 5:00 PM	
	Solution to Problem Set 2	
	Restricted Available from 6 October 2018	
	The solution to Problem 3(b) is now corrected and slightly improved.	
	Minor correction to solution of Problem 6(b). The correction is boxed.	

Lecture 15	
Lecture 16	
Problem Set 5	
In Problem 3(b), the lower bound for n should be 2, instead of 1 to avoid dividing by In 1=0.	
Solution to Problem Set 4.	
Restricted Available from 19 October 2018, 12:00 PM	
Lecture 17	
22 OCTOBER - 28 OCTOBER	
Lecture 18	
Lecture 19	
Solution to Problem Set 5	
Restricted Available from 26 October 2018, 12:00 PM	
Lecture 20	
Problem Set 6	
Solution to Problem Set 6	
Restricted Available from 2 November 2018, 12:00 PM	
Optional Assessment 2	
Restricted Available from 18 October 2018, 1:00 PM	
Test 1 Solution	
29 OCTOBER - 4 NOVEMBER	
Lecture 21	
In Lecture 21 on 29/10/2018, the topic that will be covered is the functions of several variables .	
Hi guys. You can also view on how to plot the level curves in this video: https://www.youtube.com/watch?v=uaHiAxFESc4	
Lecture 22	
In Lecture 22 on 30/10/2018, the topic that will be covered is the limit and continuity for functions of several variables .	
Lecture 23	
In Lecture 23 on 2/11/2018, we will have a lecture on partial derivatives.	
= NOVEMBED 44 NOVEMBED	
<u>5 NOVEMBER - 11 NOVEMBER</u>	
12 NOVEMBER - 18 NOVEMBER	

	Lecture 24	
	Tangent Planes and Linear Approximation!	
	Lecture 25	
	It is "Tewesday": Total differentials and chain rule.	
	Updated: I have inserted the proof to Chain Rule for the first case.	
	Problem Set 7	
	For tutorials on 19-23 November 2018	
	Solution to Problem Set 7	
19	NOVEMBER - 25 NOVEMBER	
	Lecture 26	
	Lecture 26. Implicit. Differentiation.	
	Lecture 27	
	Directional Derivatives and Gradient Vector	
	Problem Set 8	
	Please make correction on question no. 5. The function as you can see include the natural number e. There seems to be an abundanter e^3. The correct one will be e^(3y) and no extra y athe back.	anty
	Solution for Problem Set 8	
<u>26</u>	Solution for Problem Set 8 NOVEMBER - 2 DECEMBER	
26		
26	NOVEMBER - 2 DECEMBER Lecture 28	
26	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces	
26	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29	
<u>26</u>	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values	
26	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution	
26	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution Problem Set 9	
26	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution	
	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution Problem Set 9	
	MOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/h1/2018 Solution Problem Set 9 Problem Solution 9	
	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution Problem Set 9 Problem Solution 9	
	MOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution Problem Set 9 Problem Solution 9 ECEMBER - 9 DECEMBER	
	NOVEMBER - 2 DECEMBER Lecture 28 Maximizing Directional Derivatives and Tangent Planes to the Level Surfaces Lecture 29 Maximum and Minimum Values Quiz 29/11/2018 Solution Problem Set 9 Problem Solution 9 ECEMBER - 9 DECEMBER Lecture 30 Lagrange multiplier	

Lecture 32	
Iterated Integrals	
Problem Set 10	
Solution to Problem Set 10	
Forgive my handwriting.	
10 DECEMBER - 16 DECEMBER	
Lecture 33	
Double integrals over general region	
Problem Set 11	
Partial Solution Problem Set 11 (Priority questions)	
Partial Solution Problem Set 11	
17 DECEMBER - 23 DECEMBER	
Lecture 34	
Double integrals in polar coordinates	
24 DECEMBER - 30 DECEMBER	
Quiz MAT201	S
There are 10 questions in this quiz. Please answer all questions.	
This quiz can be answered from 11AM 24/12/2018 until 11AM 25/12/2018	
You have one hour to complete all the questions.	
Solution for Test 2	

ABOUT US

eLearn@USM is the official e-learning portal for USM lecturers and students. eLearn@USM is deployed using Moodle (Current Version: 3.5.1+) as our Learning Management System. A centralized learning centre for USM lecturers and students. All courses offered by the university can be found in this portal. eLearn@USM enables smooth course administration, delivery and management between lecturers, student and course administrator.

INFORMATION FOR

Login Admin

CONTACT US

- Pusat Pembangunan Kecemerlangan Akademik & Pembangunan Pelajar Bangunan H24, Kompleks Cahaya Universiti Sains Malaysia 11800 USM Pulau Pinang
- Phone: 04-6534472
- E-mail: elearn@usm.my

Copyright © 2018 - Universiti Sains Malaysia

Reset user tour on this page Get the mobile app