
Pushdown Automata Versioning Framework for
Web-Based Developmental Surveillance Systems

Yan Huan Ch’ng
School of Computer Sciences

Universiti Sains Malaysia
Gelugor, Penang, Malaysia

chng_yan_huan@student.usm.my

Mohd Azam Osman
School of Computer Sciences

Universiti Sains Malaysia
Gelugor, Penang, Malaysia

azam@.usm.my

Hui Ying Jong
School of Humanities

Universiti Sains Malaysia
Gelugor, Penang, Malaysia

jonghuiying@usm.my

Abstract—The development of existing software system,
including web-based developmental surveillance programs,
adopt linear software versioning systems wherein all files
associated to a particular software version is pre-packed
together and distributed to clients. In this paper, the two
inconveniences incurred by linear software versioning onto
web-based software development have been highlighted in
terms of the software system update and rollback
infrastructure. The use of a new Pushdown Automata (PDA) -
based versioning framework has been proposed to resolve
these issues, by reducing update file storage requirements on
the master server, and by simplifying the update files fetching
process and version update/rollback installation process. Based
on the proposed PDA-based versioning framework, a
description is provided on how branched software versioning
systems can be implemented to facilitate the development of a
light-weight central repository server which allows access to
different online language screening tools for all respective
needs.

Keywords—Language screening tool, web-based software,
branched software versioning, software update, rollback,
pushdown automata

I. INTRODUCTION

In computer systems involving master servers which
moderate and control different software versions on their
clients, the three main tasks being performed include
software version update, software version verification and
software version rollback. Likewise, multi-version web
applications or web-based tools which reside on the host
server go through the same phases when accessed through a
domain and loaded onto client devices. Upon a software
version update request, the software files residing in client
side, which are deemed to be outdated by the master server,
are deleted and replaced by updated files. In the case of
software rollback, files are deleted and replaced by an older
version of the same file. This bears similarity to undo/redo
(UR) operations in most computer systems, which are more
commonly linear than not. As a result, software updates and
rollbacks via existing common version control systems rarely
stores multiple historical states of one single version. Instead,
each software version is treated as a single state, in which
updating or rollback moves the software version linearly
along plausible states (versions) connected as a single line. In
this paper, the use of pushdown automata (PDA) has been
proposed to emulate version control capabilities observed
within non-linear UR models, allowing software system
version update and rollback procedures to be represented as a
PDA state diagram instead of a fixed stack or linear list.

A. Scope of Research
This paper was written as a sub-study of an ongoing

research involving the development of a web-based language
screening tool which offers Specific Language Impairment

(SLI) diagnosis and music therapy, known as the Psychology
Software Tool (PST). A survey conducted on existing web-
based language screening tools, which are meant to be used
by speech-language therapists to screen patients for
developmental language disorders, reveal that most of these
web-based diagnosis tools are subjected to inconveniences
incurred by the linear model of multi-version software
development. As a result, these systems which offer speech-
language pathology services suffer from higher development
costs, slow file server respond times, reduced service
choices, and more [11]. With respect to the data that has been
collected in the survey, as well as the affiliation to the
original research on web-based language screening tools, the
PDA-based versioning framework delineated in this paper
has been studied solely within the context of web-based
developmental surveillance systems. However, the actual
application of this proposed conceptual framework should be
feasible over the span of most computer systems, wherever
client-server system architecture is involved.

B. Overview of multi-version software systems
When software developers manage multiple software

versions and editions, software versions are commonly
linear, e.g. version 1.0 precedes 1.1, which precedes 1.2, so
on and so forth. The installation process of a particular
computer system which follows this linear model identifies
the target software version, which informs the system
regarding the dependencies required for installation of that
particular software version, and proceed to collect the files
needed to update the existing software. In many cases, the
old version of the software has to be removed before
installation of an updated version of the same software takes
place. In other cases, minor patches are introduced to the
existing system as minor updates.

Take operating system updates as an example, quality
updates involve minor changes and bug fixes, while feature
updates cause the OS to make a backup of itself, uninstalls
the existing version of the OS and replace it with the new
build containing the major version update. Likewise, rolling
back to an older major build uninstalls the latest feature
update to go back to an older version by restoring the backup
of the OS. As such, software versions handled by such
versioning systems can be represented as an ordered list,
which users can choose to move back and forth on states
within the list. The most basic way to implement this would
be to store the exact state of the software version, i.e. all
associated files, in these states which make up the ordered
list according to their version number. This is simple to
implement and is widely used, but introduces a number of
issues which, may not bother most users, but exist
nonetheless. One of these problems involve storage
requirements, in the sense that the files relevant to a
particular version may be largely duplicated, which as a

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

978-1-7281-7243-9/20/$31.00 ©2020 IEEE 73

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

result causes the host server home to a great deal of
redundancies. For instance, version 1.0 contains files A, B, C
and D, while version 1.1 contains files A, B, C, D and E. To
us, it is obvious that the first four files are duplicated, with E
being the sole addition to the software system.

Given the basic implementation described early,
however, such redundancies are overlooked. Excluding
minor patches, software systems containing many different
major versions will suffer from this implementation in the
sense that the storage required to hold all files in all states
within the version list may grow exponentially, or at best
linearly. To conclude the first issue, it is plausible to assume
that linear versioning is memory intensive. Another
inconvenience posed by the basic implementation involves
its linearity, and how it prevents software system developers
from providing different branches of the same version of the
software system. Figure 1 below shows an example of
branched software versioning.

Fig. 1. Branched Software Versioning

In Figure 1 above, observe that version 1 of the software
system branches off into three updates on the same timeline,
namely versions 2a, 2b and 2c. What this represents is a
scenario wherein these three updates are “sister versions”,
versions which do not precede one another, but are pushed
out in parallel to the user base. In the context of
developmental language screening tools, these sister versions
may represent the same software system, which offers
different diagnosis and treatment services. For instance,
version 2a may contain updates which introduces sentence-
picture matching task for SLI diagnosis, 2b for speech
repetition tests, while 2c is a debug build which focuses on
improving version 1 offline accessibility options. Neither
version of the 2x series is an improvement in terms of SLI
screening capabilities over the other, but rather an update
branch which speech-language pathologists can choose from
- Therapists which are more focused on offline work and
require the corresponding tools can choose to go for 2c,
while others utilizing the software may go for 2a or 2b,
depending on other language screening tools that they use in
conjunction to the target software. Observe that version 2a
and 2b converges into the next mandatory update to version
3, whereas users on 2c can bypass version 3 to go for version
4. In this case, version 3 may contain fixes which address
certain network issues, and this is not required for 2c users
since the changes made in 2a and 2b are not present in 2c. In
terms of rollback, observe that clients running on version 4
can choose to either rollback to version 3 or version 2c in a
single step. The amount of software system versioning
flexibility is not seen within linear versioning systems or
frameworks. In order to work around this issue, existing
software system developers have to launch multiple versions
of the same software system under alternate prefix or postfix

titles. As a matter of fact, branched versioning systems or
tools have been introduced in the past, but never gained
mainstream popularity due to implementation complexity
and the relative simplicity offered by linear versioning
systems. Furthermore, the storage issues previously
mentioned undermines the feasibility of version branching.
To summarize the issues and inconveniences incurred by the
common version update and rollback systems:

• File redundancy across multiple versions of the
same software system causes existing update and
rollback systems to be memory intensive.

• The lack of version branching in linear versioning
systems hinders the ability of developers to design
flexible software in a way which allows users to
update and rollback to desired software versions.

In the next section of this paper, the existing systems and
related work is reviewed. This review reveals past research
on measures to overcome these issues, and feasible results
which can be leveraged to develop an innovative update and
rollback framework involving the use of PDA.

II. BACKGROUND AND RELATED WORK

A. Pushdown Automata
Pushdown Automata are finite state machines (FSM)

equipped with a stack (pushdown stack), and the
corresponding ability to push and pop stack symbols on each
state transition. The transition from a particular state to
another state in pushdown automata can depend not only on
the input symbol to a particular state, but also the stack
symbol which is currently on top of the stack. A PDA differs
from a FSM mainly in the aspect of memory - FSMs are not
equipped with structures to store the previous states in which
state transition has taken place in, while the stack of a PDA
can play the role of external memory.

B. Literature Review
Over the years, a number of research studies have been

conducted on the involvement of automata theory and its
practicality within undo/redo functions of computer software
[10]. Takagi et al. [2] proposes the use of PDA for modelling
and testing complex UR functionality within software, and
defined the scope of UR elements which can be represented
or described by a PDA. As such, the work by Takagi et al [2]
became the theoretical foundation of this paper - It is
hypothesized that software update and rollback functionality
is similar to transitions in UR, which, in their work, are
represented based on the symbols within the PDA stack [2].
According to [2], a usual PDA has only one stack, but
modeling UR functions requires stacks to hold a history of
state transitions for the undo function and the redo function
respectively. However, the possibility of simplifying the use
of PDA to the default single-stack architecture to simulate
UR functionality has not been thoroughly explored. Since
software update and rollback are relatively older topics
within the field of computer sciences, a number of older
journal articles also provided relevant insight into the
implementation of these functionality. Such work include
Chandy K. M. et al. [3], which depicts how system
checkpoints are created and stored on the system, and the
aspects which may trigger an automatic rollback procedure.
According to Chandy, checkpoints (which, in the context of
this paper, can be considered as older versions of a system

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

74

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

software) are chronological records of all data and the
transactions involved in the system, at a particular point of
time [3]. During the year of when [3] was published (1975),
it was clearly stated that partial software recovery and
rollback not only takes a significant amount of time due to
check-pointing, but also incurs high hardware cost for
storage of redundant data [3]. Out of the three rollback and
recovery (RR) models proposed in [3], neither involves the
use of PDA to describe backup data storage nor to implement
rollback functionality. However, the graph theory was used
to describe model C, wherein the number of arithmetic
operations required to compute optimal checkpoints can be
calculated [3]. A more recent study describes methods to
optimize rollback and re-computation costs within workflow
management systems [4]. Workflow management systems
execute long-running computational and data-intensive
pipelines of operations [4]. Workflow rollback and re-
computation tasks are in huge contrast against rolling back
software systems, wherein the latter deals with deleting or
replacing files with an older counterpart, while the former
has to account for checkpoints made during the middle of
active computations [4]. That said, the paper provided plenty
insight into how rollback, while not maintaining any
execution state of processes, allows faster system restoration
due to the lack of need for error-checking and re-
computation [4]. The use of versioning filesystems with
continuous snapshot ability was also explored, and was said
to provide efficient rollback capabilities [4]. Likewise, new
approaches involving the use of an extra recovery layer
containing order tables for rollback purposes were proposed
in the field of distributed systems [5][8]. In terms of software
updates within the field of IoT, several research have
delineated the overall architecture and software components
of the IoT stack, including the few aspects which have to be
considered when updating software, such as inter-module
compatibility, network compatibility and platform
compatibility [6]. Due to how the software stack and the
corresponding updates are designed, some update scenarios
involve the replacement of the entire code base, in which
case compatibility analysis would be crucial prior to
executing an update process [6]. In other cases, updating
application-level code blocks is said to allow the remaining
software components to stay intact [6]. In terms of future
work, it has been mentioned that code modularity and code
isolation practices are crucial towards increasing the security
and efficiency of software system updates within the field of
IoT [6][7].

On the other hand, research studies within the context of
web-based language screening tools and developmental
surveillance systems have commonly focused on evaluating
the effectiveness and reliability of these tools and systems
when being delivered over the internet [11]. Bandwidth or
network connection issues have commonly been reported as
an issue impacting the accuracy of online-based tests, since
latency not only causes audio/video distortion, but also
affects timing in tests which contain time-sensitive elements
[11]. It is pointed out that the practicality of diagnosis
conducted over the internet through web browsers lies on
two extremes, either of high practicality through cost
reduction and increased diagnosis effectiveness [12][14], or
impracticality due to a lack of facility [12]. In the general
sense, the performance of web-based tests rely greatly on the
existing computer network which they run on [12]. This
heavy reliance hints towards the importance of implementing

a fast, secure and cost-effective distribution infrastructure for
web-based language screening tools, by considering different
aspects, from how files are stored and retrieved from the file
system, all the way to the capabilities of the physical web
server used to host the tools [13].

III. PROPOSED SOLUTION

With respect to the inconveniences of common software
system update and rollback infrastructure described in
Section I, the Pushdown Automata (PDA) Versioning
Framework for web-based developmental surveillance
systems is proposed, with the following objectives in mind:

• Reduce hardware storage space requirements of the
master server which stores the software version
base.

• Offer branched versioning system to software
system developers.

In order to explain our proposed framework with relative
ease, Figure 1 shall be referred to for an example of branched
software versioning as a potential case study, in which
versions 1, 2a, 2b, 2c, 3, and 4 are present and
interconnected. Assume that a collection of files are tied to
each of the distinct software system versions. For instance,
version 1 includes files A, B and C; version 2 includes files
A, B, D and E, etc.

The following sections discuss the involvement of PDA
to achieve each of the two objectives being mentioned, and
will discuss these few examples in detail.

A. PDA-based Update Fetching Component
As briefly mentioned in the introduction of this paper,

existing software system update files are mostly
implemented by packing all relevant files into an installer,
which can then be pushed to client side for installation to
take place. For large systems, this means that installers take
up a huge space within the master server. The changes in
between neighboring versions are small, and most of the
code and files are duplicated. The current PDA framework
being proposed takes advantage of the fact that files which
span across multiple distinct versions are in fact the same
file, and can actually share a common storage space, much
like global variables in programming. Instead of copying the
file into different version folders, and then packing the
individual folders into installers, it is visualized that all files
can be simply stored in a fixed partition, and linked to
specific software versions through the use of context-free
grammar (CFG) designed as PDAs. When an update of the a
particular version based on specific parameters (input version
string) is requested by the client, the master server consults
the “Linker PDA” specific to that version, and generates the
installer dynamically by pulling the files required into a
temporary folder, which is then packed and sent to the client.
Consider the following CFG grammar for a simple file
linking rule in a single software system version:

S � AB `
A � w | �
B � xy | z

By the definition of our PDA framework and file linking
rules, the software system version requires two system
components, A and B. The former component, A, is optional,
and as such, file ‘w’ which corresponds to component A can
either be fetched, or omitted, according to user preference.

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

75

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

On the other hand, installation of component B is mandatory,
and the files which have to be fetched for installation is
either files x and y, or file z. Again, this choice would be
provided by the software system developer, and selected by
the user. Figure 2 shows the Linker PDA which corresponds
to the CFG grammar listed earlier.

Fig. 2. Linker PDA for file linking rules

According to the proposed framework, all basic update
file units reside in a fixed partition in the master server. In
the example provided, this includes files w, x, y and z.
According to user selection through whatever provided
interface which talks to the master server to request for
updates, the specific update or rollback version and the
required components are selected. The master server consults
the Linker PDA, and whenever the Linker PDA pops a stack
symbol which corresponds to a file in the partition, the
master server fetches the files, which can then be packed and
sent to the client. It is also completely possible to go with a
more naive implementation of the proposed PDA-based
framework, by having a single-line CFG grammar for direct
file linking:

S � abcdef…

In the case above, the collection of files linked to the
described version are directly fetched upon request, without
any optional or alternative components available for user
selection.

The proposed framework, however, has yet to address
update and rollback scenarios wherein changes to the
software system not only include additional files which have
to be downloaded, but also obsolete files which may need to
be replaced or deleted from the software directory. In order
to handle such cases, the proposal of the PDA-based
framework can be extended to cover software system file
cross-validation functionality, wherein an input string based
on the existing files in the target software system is built and
fed to a PDA. The functionality of this additional PDA can
be extended to include file deletion states. This means that
two PDAs are involved: The first Linker PDA resides in the
master server, and is consulted whenever an update or
rollback request is received; The second PDA is a copy of
the first PDA with additional file deletion functionality,
which is sent to the client along with the collected update
files, and executed in a similar manner to how an installer
would be. In short, the second PDA is an installer which
installs the files fetched by the Linker PDA. For the rest of
this paper, the second PDA is addressed as the “Installer
PDA”. To describe this in detail, consider Figure 3 below,

which shows how the installation process on client-side
works via the Installer PDA.

Fig. 3. Client-side Installer PDA with file replace and deletion functionality

The input to the Installer PDA shown in Figure 3 above
is a complete string representing the union of existing files in
the software system directory and the update files fetched
from the server. The Installer PDA attempts to capture input
symbols/files which are foreign to the collection of update
files, and deletes the associated files. Consider the example
wherein the existing software system directory contains files
a, b, c and d, while the updated version contains files a, b, c
and e. The symbol string resulting from the union of existing
files and update files would be “abcde”, all of which would
be pushed into the PDA stack. After this process, the installer
PDA begins to handle file replacement and deletion
functionality, where files which are elements of the update
files would be copied into the software system directory,
either adding to the collection of files there, or by replacing
existing files with the same filename. As for file symbols in
the stack which are not elements of the update files
collection, these files are directly deleted from the software
system directory. Both file addition/replacement and deletion
steps are accompanied by popping the top of the stack, as
such, the Installer PDA will always enter the accepted state
(end by empty stack).

B. PDA-based Non-Linear Versioning System
In terms of building a Non-Linear or branched

versioning system as opposed to the commonly practiced
linear versioning system, the same principles of PDAs and
CFG grammar for update and rollback rules can be
implemented to regulate version change eligibility. This is,
however, optional - There are two scenarios to be
contemplated. The first scenario is where there are no
boundaries as to which version can be updated or rolled
back to another version. The second scenario is where
software system version updates and rollbacks are limited to
specific rules set by the software system developers.
According to the Update Fetching component in our PDA-
based framework, software versions are, by default,
structured in a way where no rules exist (First scenario) - A
client running version 1 or a particular software system
implemented according to our framework can perform an
update to jump to version 10, skipping across multiple
versions in between. This is because file dependencies can
be resolved directly via the Installer PDA. As such, the
framework already grants freedom from the linearity of
common software versioning systems. This can be achieved
because software versions are no longer a fixed collection of
files, let alone a patch containing only a limited collection of

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

76

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

files which may lack dependencies in versions which are not
targeted for that particular bug-fix update. The PDA-based
framework redefines a software version as a set of rules
which can be interpreted by a PDA, in order to, upon
demand, dynamically fetch and create an all-compatible
version update installer.

In the case where the second scenario is preferred, an
additional PDA which resides on the master server has to be
created to validate the selected update or rollback path
requested by the client. In this case, a CFG grammar can be
written, containing the rules of which a single version can
transition to. For the rest of this paper, this third PDA is
addressed as the “Validator PDA”. Figure 4 below shows a
general example of what the version eligibility Validator
PDA would look like.

Fig. 4. Update/Rollback target version eligibility Validator PDA

Although the structure of the Validator PDA appears to
be similar to that of the Installer PDA, a couple of semantic
difference exist. The Validator PDA does not go with
acceptance on empty stack, but rather accepts upon popping
a stack symbol which corresponds to the target version that
the client wishes to update or rollback to. In order for the
Validator PDA to work, the master server has to determine
the current version of the software system that the client is
using, and derive the list of eligible software system versions
that the client can transition to. Taking the branched software
versioning system from Figure 1 as an example, if the user is
currently running version 2a, they are only allowed to
rollback to version 1, or update to version 3. As such, the
Validator PDA will push 1 and 3 into the PDA stack. The
PDA then pops all stack symbols until the target version that
the clients wishes to update or rollback to, is found. If the
user selects version 3, the Validator PDA moves to the
accepted state upon popping stack symbol 3. If the user
selects version 4, the PDA pops everything from the stack
and does not reach the accepted state, hence rejecting the
selection. It is worth noting that the Validator PDA shown in
Figure 4 lacks the procedures which reflect deriving eligible
versions akin to CFG grammar derivation. This part was left
out intentionally, in order to focus on the latter, core
functionality of the Validator PDA. Through the reliance on
input values from the client for target version, as well as the
master server for reading client software system current
version, it is shown that the Validator PDA can be used to
validate all version update and rollback rules. As such,
multiple Validator PDAs are not needed to validate multiple
versions, reducing implementation complexity.

C. Language Screening Central Repository Server
 The PDA-based Update Fetching component and the
Non-Linear Versioning System which have been delineated
in earlier sections describe the use of a total of three PDAs,
namely, the Linker PDA, Installer PDA and Validator PDA.
With respect to our base study involving developmental
surveillance systems, the PDA-based versioning framework

can be applied to develop a central repository server which
houses many distinct language screening tools. Figure 5
shows the overall system architecture of the proposed
language screening central repository server.

Fig. 5. Central Repository Server System Architecture

 Figure 5 shows an implementation of the central
repository server involving a three-tier client-server
architecture. Red arrows represent client requests, green
arrows represent validation flags sent out by the Validator
PDA, while blue arrows represent the software files and the
corresponding Installer PDAs being sent from the server to
the client. The client tier involves the UI and presentation of
the application to speech-language therapists who wish to
access language screening tools stored in the central
repository. The application tier handles the business logic of
the repository, acting as an interface between the client and
low-level access to files stored on the physical server. The
server tier is the backend in which the actual database
operates. The server tier contains methods to manipulate files
and other information hosted on the server. With respect to
the PDA-based versioning framework and the functionality
of the separate tiers within the system architecture, the
Validator PDA and the Linker PDA are situated at the
application tier and server tier respectively. The application
server and its Validator PDA forms a lock-and-key model,
wherein client requests for a particular language screening
tool goes through the Validator PDA. The Validator PDA
then decides, based on client request information and custom
rules, whether to grant or reject the request. Upon successful
validation, the flag triggers the Linker PDA, which starts
collecting all the relevant files required to form the target
language screening tool, and the corresponding Installer
PDA required to unpack and replace the files at client side.
The files relevant to the client request are then sent from the
server tier to the application tier to be packaged into a single
deliverable of appropriate format if required, before being
sent to the client.

 A few development aspects should be taken into
consideration during actual implementation of both the PDA-
based framework and system architecture. The first aspect
involves the amount of information which should be
acquired from the client along with the client’s request for a
target language screening tool. This amount of
implementation depends entirely on the implementation of
the Validator PDA hosted on the application tier. Our
previous description of the PDA-based non-linear versioning
system explains the use of Validator PDAs in the context of

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

77

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

validating software versions, and hence the current version of
software under the client’s use is part of the appropriate
information which should be collected. However, Validator
PDAs are modifiable by nature, in order to accommodate
different rules. For instance, software developers or system
administrators may want to grant clients access to certain
tools, not based on the current version of the tools they are
using, but rather a custom priority-based access system. In
this case, implementation of the framework must take into
consideration proper encoding scheme of user priority level,
in such a way that the resulting object can be validated by a
PDA. Another development aspect involves selecting a
feasible client-server architecture on a per-case basis. While
the example provided in Figure 5 shows a three-tier client-
server architecture, actual implementation is subjected to
available resource and other constraints. As such, other
architectures which offer higher ease of maintenance and
faster client-server communication speeds may be desirable.

IV. CONCLUSION

This paper highlights that existing versioning
infrastructure of common web-based software systems
borrow largely from linear UR models, because the linearity
offers simplicity in terms of implementation. This has led to
a number of inconveniences down the road, such as the lack
of flexibility to create branched versions for common
software update and rollback purposes, and the increased
storage cost due to duplication of files involved as part of
different versions of a particular target software. Based on
these inconveniences, a new PDA-based versioning
framework has been proposed, and the inner workings of this
conceptual framework has been explained, based on two
scenarios in which the inconveniences caused by linear
versioning systems can be improved. The examples that have
been discussed in this paper show that the PDA-based
framework for software versioning has solid theoretical
foundation and simple conceptual basis, and can be
implemented with relative ease. With respect to the proposed
language screening central repository server, further research
into the implementation feasibility of the PDA-based
versioning framework shall proceed in the direction of
prototyping a web-based language screening tool as a
minimal working example of the framework.

ACKNOWLEDGMENT

We would like to express our deepest appreciations to all
staff of both the School of Computer Sciences and the
School of Humanities, USM. This study was supported by
the short-term grant (304/PHUMANITI/6315349) from
Universiti Sains Malaysia. We would also like to extend our
gratitude to Dr. Gan Keng Hoon for the aid provided
throughout the research process in order to obtain feasible
implementations of the PDA-based framework. The results
of this paper would not have been possible without a
thorough understanding of context-specific applications of
pushdown automata, which has been made possible through
the material and references provided.

REFERENCES

[1] Jain, N., Mali, S. G., & Kulkarni, S. (2016). Infield firmware update:
Challenges and solutions. 2016 International Conference on
Communication and Signal Processing (ICCSP).
doi:10.1109/iccsp.2016.7754349

[2] Takagi, T., & Furukawa, Z. (2010). The Pushdown Automaton and Its
Coverage Criterion for Testing Undo/Redo Functions of Software.
2010 IEEE/ACIS 9th International Conference on Computer and
Information Science. doi:10.1109/icis.2010.144

[3] Chandy, K. M., Browne, J. C., Dissly, C. W., & Uhrig, W. R. (1975).
Analytic models for rollback and recovery strategies in data base
systems. IEEE Transactions on Software Engineering, SE-1(1), 100–
110. doi:10.1109/tse.1975.6312824

[4] Lakhani, H., Tahir, R., Aqil, A., Zaffar, F., Tariq, D., & Gehani, A.
(2013). Optimized Rollback and Re-computation. 2013 46th Hawaii
International Conference on System Sciences.
doi:10.1109/hicss.2013.434

[5] Ge-Ming Chiu, & Cheng-Ru Young. (1996). Efficient rollback-
recovery technique in distributed computing systems. IEEE
Transactions on Parallel and Distributed Systems, 7(6), 565–577.
doi:10.1109/71.506695

[6] Bauwens, J., Ruckebusch, P., Giannoulis, S., Moerman, I., & Poorter,
E. D. (2020). Over-the-Air Software Updates in the Internet of
Things: An Overview of Key Principles. IEEE Communications
Magazine, 58(2), 35–41. doi:10.1109/mcom.001.1900125

[7] Chandra, H., Anggadjaja, E., Wijaya, P. S., & Gunawan, E. (2016).
Internet of Things: Over-the-Air (OTA) firmware update in
Lightweight mesh network protocol for smart urban development.
2016 22nd Asia-Pacific Conference on Communications (APCC).
doi:10.1109/apcc.2016.7581459

[8] Baresi, L., Ghezzi, C., Ma, X., & Manna, V. P. L. (2017). Efficient
Dynamic Updates of Distributed Components Through Version
Consistency. IEEE Transactions on Software Engineering, 43(4),
340–358. doi:10.1109/tse.2016.2592913

[9] J. Schröpfer, F. Schwägerl and B. Westfechtel, Consistency Control
for Model Versions in Evolving Model-Driven Software Product
Lines, (2019) ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-
C), Munich, Germany, 2019, pp. 268-277, doi: 10.1109/MODELS-
C.2019.00043.

[10] Jakubec, K., Polák, M., Ne�aský, M., & Holubová, I. (2014).
Undo/Redo Operations in Complex Environments. Procedia
Computer Science, 32, 561–570. doi:10.1016/j.procs.2014.05.461

[11] Waite, M. C., Theodoros, D. G., Russell, T. G., & Cahill, L. M.
(2010). Internet-Based Telehealth Assessment of Language Using the
CELF–4. Language Speech and Hearing Services in Schools, 41(4),
445. doi:10.1044/0161-1461(2009/08-0131)

[12] Roever, C. (2006). Validation of a web-based test of ESL
pragmalinguistics. Language Testing, 23(2), 229–256.
doi:10.1191/0265532206lt329oa

[13] Roever, C. (2001). Web-Based Language Testing . Language
Learning & Technology, 5(2), 84–94. http://dx.doi.org/10125/25129

[14] Baker J, Kohlhoff J, Onobrakpor SI, Woolfenden S, Smith R, Knebel
C, Eapen V. (2020). The Acceptability and Effectiveness of Web-
Based Developmental Surveillance Programs: Rapid Review JMIR
Mhealth Uhealth 2020;8(4):e16085

[15] Anderson, A. (2014). Web-based Telerehabilitation Assessment of
Receptive Language. Washington State University Master Thesis).
https://s3.wp.wsu.edu/uploads/sites/867/2015/08/Anderson_2014.pdf

[16] Kelly, J. P. J., Avižienis, A., Ulery, B. T., Swain, B. J., Lyu, R.-T.,
Tai, A., & Tso, K.-S. (1986). Multi-Version Software Development.
IFAC Proceedings Volumes, 19(11), 43–49. doi:10.1016/b978-0-08-
034801-8.50013-1

2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 21–22 August 2020, Penang, Malaysia

78

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on November 16,2020 at 16:26:38 UTC from IEEE Xplore. Restrictions apply.

