

## SCHOOL OF CIVIL ENGINEERING ENGINEERING CAMPUS UNIVERSITI SAINS MALAYSIA 14300 NIBONG TEBAL

# ACADEMIC SESSION SEM 1 2020/2021 EAL 431 HIGHWAY DESIGN



## **ASSIGNMENT 1**

## **Question 1**

- [a] Horizontal curves provide transitions between two tangent lengths of a roadway. To attain a smooth transition, a simple circular curve that the PI at station 20+50.25, with the  $\Delta$  equal to 35° has been designed. The degree of curvature is approximately 6°. Based on the given information, you are required to sketch an appropriate diagram and locate the station of the point of curvature (PC) and the point of tangent (PT) (**10 marks**)
- [b] A two-lane rural highway (Figure 1) with a design speed of 100km/h goes from normal crown with 2.5% cross slope to 6% super-elevation by means of a spiral transition curve. The spiral curve is 85m long. If the super-elevation is attained by rotating the road section around the centreline, sketch a cross-section diagram of the road at 10, 30, 50, and 70m from the tangent to spiral (TS)

Lane width = 3.35m / lane Carriageway type = Single

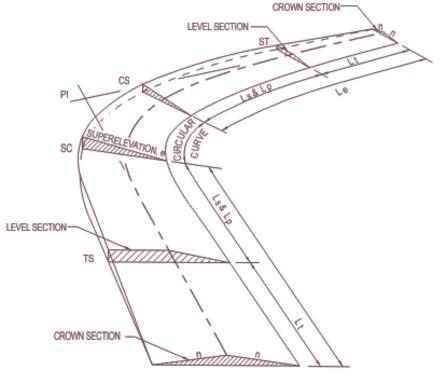



Figure 1

(20 marks)

#### **Question 2**

- [a] For road network designed based on the JKR requirements, the parabolic curve is adopted in the vertical alignment design to provide a safe and comfort ride for the road users. Based on your understanding, state the basic equation of a parabolic curve. Additionally, justify why this curve type is preferred. (7 Marks)
- [b] State ONE important design criteria for crest vertical curve and sag vertical curves, respectively. (5 Marks)
- As a road design engineer, you are required to design a vertical curve for an expressway [c] located at rural area. The design speed is 65 mph, the grades are +4% uphill and 2% downhill. Determine the minimum length of the vertical curve. Additionally, state ONE important criteria for the selected length of the vertical curve. (Refer Table 1 for additional design parameter) (8 Marks)

| Metric                                                              |                |            |                       | US Customary |                |                                |        |
|---------------------------------------------------------------------|----------------|------------|-----------------------|--------------|----------------|--------------------------------|--------|
| Design speed                                                        | Stopping sight | Rate of ve | ertical curvature, K* | Design       | Stopping sight | Rate of vertical curvature, K* |        |
| (km/h)                                                              | distance (m)   | Calculated | Design                | speed        | distance (ft)  | Calculated                     | Design |
| 20                                                                  | 20             | 0.6        | 1                     | 15           | 80             | 3                              | 3      |
| 30                                                                  | 35             | 1.9        | 2                     | 20           | 115            | 6.1                            | 7      |
| 40                                                                  | 50             | 3.8        | 4                     | 25           | 155            | 11.1                           | 12     |
| 50                                                                  | 65             | 6.4        | 7                     | 30           | 200            | 18.5                           | 19     |
| 60                                                                  | 85             | 11         | 11                    | 35           | 250            | 29                             | 29     |
| 70                                                                  | 105            | 16.8       | 17                    | 40           | 305            | 43.1                           | 44     |
| 80                                                                  | 130            | 25.7       | 26                    | 45           | 360            | 60.1                           | 61     |
| 90                                                                  | 160            | 38.9       | 39                    | 50           | 425            | 83.7                           | 84     |
| 100                                                                 | 185            | 52         | 52                    | 55           | 495            | 113.5                          | 114    |
| 110                                                                 | 220            | 73.6       | 74                    | 60           | 570            | 150.6                          | 151    |
| 120                                                                 | 250            | 95         | 95                    | 65           | 645            | 192.8                          | 193    |
| 130                                                                 | 285            | 123.4      | 124                   | 70           | 730            | 246.9                          | 247    |
| * Rate of vertical curvature, K, is the length of curve per percent |                |            |                       | 75           | 820            | 311.6                          | 312    |
| algebraic difference in intersecting grades (A). $K = L/A$          |                |            |                       | 80           | 910            | 383.7                          | 384    |

Table 1. Vertical Curve Design: Important Parameters

[d] A 500-meter equal-tangent sag vertical curve has the PVC at station 100+00 with an elevation of 1000 m. The entrance grade is -4% and the exit grade is +2%. Determine the stationing and elevation of the PVI, the PVT, and the lowest point on the curve. (10 Marks)

Due date: 24/11/2020 (5.00 PM)