

FOOD TOXICOLOGY

NORLIA MAHROR 25/11/2020

CONTENTS

- What is toxicology? Hormesis

PRINCIPLE OF FOOD TOXICOLOGY • Toxicity, Dose, and Response,

MAIN GROUPS OF FOOD TOXICANT

TOXICOLOGY

STUDY OF THE FORMATION, TOXINS) ON BIOLOGICAL SYSTEM (ORGANISM, ORGANS, CELSS).

"All substances are poisons; there is none that is not a poison. The right dose differentiates the poison from a remedy"

Paracelsus (1493 - 1541) Founder of toxicology

COMPOSITION, AND THE ADVERSE EFFECTS OF CHEMICALS (TOXICANTS /

FOOD TOXICOLOGY

FOCUS ON THE ANALYSIS OF TOXIC **EFFECT OF CHEMICAL SUBSTANCE IN** FOOD

• natural endogenous products • contaminating organisms food production, processing, and preparation

FACTORS AFFECTING THE TOXICITY

TOXICITY IS THE CAPACITY OF A CHEMICAL SUBSTANCE TO CAUSE ADVERSE ON LIVING ORAGNISM

Chemical structure

Polarity and reactivity of the compound

Routes of administration

Applied on skin ingested, inhaled, injected, etc..

Period (time) of exposure

Number of exposure

Singe dose or multiple dose

Physical form of toxicants

Solid, liquid, gas

Individual's heath

Exposure to the toxicant can be:

Acute

- Contact time below 24 h,
- severe symptom
- followed by death
- e.g. tetrodotoxin intoxication, botulism

Subacute

- Usually repeated contacts in 1 month
- same effect with acute but weaker symptom
- e.g. agricultural workers dealing with pesticides

Subchro nic

Continuos contact during 1 – 3 months

Chronic

- Continuous > 3 month exposure to harmless daily dose of toxicant
- accumulation of toxicant in organism
- symptom develop slowly
- e.g. cancer due to ingestion of aflatoxin, boowymotol

TOTAL AMOUNT OF TOXIC THE ORGANISM

• Expressed in microgram or miligram per kg of the body weight

COMPOUND ADMINISTERED TO

Response

EXPOSED TO THE TOXIC COMPOUNDS

• the intensity depends on the concentration of toxic compounds

BIOCHEMICAL OR PHYSIOLOGICAL CHANGES IN THE ORGANISM

Toxicity test on animal

https://www.iaapea.com/ld50-test-on-animals.php

Lethal dose (LD) is the amount of substance causing the death of an animal

The toxicant dose is expressed in miligram or microgram per kilogram body weight

LD 50 the dose that cause 50% death of tested animals (acute contact with a toxicant)

Table 1.1 Approximate LD₅₀ Values for a Selection of Chemical Compounds

Chemical Compound

Ethanol Sodium chloride Paracetamol Malathione Lindane Morphine sulfate Caffeine, aspirin Sodium nitrite DDT Arsenic Dieldrine Strychnine sulfate Aflatoxin B1 Nicotin Tetrodotoxin Tetrachlordibensodioxin (TCDD) Botulinum toxin

LD ₅₀ (mg/kg, rat, orally)
10,000
4000
1900
1200
1000
900
200
180
100
48
40
2
1.2
1
0.1
0.001
0.00001

Doseresponse curve

ESTIMATION AND COMPARISON OF ACUTE TOXICITIES OF SUBSTANCES

slope - predictability

steeper slope need smaller change of dose to produce the same response with the other toxicant

location - toxicity

higher toxicity is located more left

Thresold doses

- dose that induce acute severe intoxication
- always higher than the dose for chronic intoxication

Highest dose that does not causing any effect

effect) lowest dose that causing an observable effect

NOEL (no-observed effect level)

NOAEL (no-observed adverse effect)

- Highest dose that does not causing any adverse effect
- the basis for counting of acceptable daily
 - intake of food safe consumption of
 - food that contain pesticides, food additive, etc.

LOAEL (lowest-observed adverse

BMD - benchmark dose for low toxicant doses

HORMESIS

The dose-response relationship is characterized by:

- low dose beneficial effect
- very low dose: adverse effect (deficiency)
- high dose toxic effect
- E.g. Vitamin A
 - low dose contribute to night blindness
 - high dose liver toxicity & birth defect

Biological processes that can modulate response (beneficial & adverse) to an administered chemical

NATURAL CONTAMINANT

- Endogenous plant toxicant
- Mycotoxin
- Microbial toxin
- Shelfish toxins
- Scombroid fish poisoning
- Tetrodotoxin in puffer fish

UNINTENTIONAL CONTAMINANTS

Synthesized during food processing (PAH, HCA, acrylamide, etc.), from food contact material (pthalate, bisphenol), environment (heavy metal, pesticides)

MAIN GROUP OF FOOD TOXICANTS

INTENTIONALLY ADDED CHEMICAL

Endogenous plant toxicant

Solanine in green and sprouting potatoes Caffeine in coffee theobromine in cocoa bean

Hydrogen cyanide

Cassava, almond, , apricots, apple

Coumarin

Spinach, radish, parsley, taro leaves

Toxicant formed during processing

Maillard reaction product

Chemical reaction between compound containing amino acids, and reducing sugar produce furanes, aminocarbonyl, pyrazines

Haterocyclic amines (HCA)

Cooking meat at high temperature & long time

Polyunsaturated fatty acids (PUFAs)

Storage and/or thermal process

Nitosamines

Frying food with high nitrite content

Polycyclic aromatic hydrocarbons (PAH)

Smoking of meat, fish, roasting coffe bean

Acrylamide

Fried potato product, bread and bakery product

Toxicant formed during processing

Transfatty acid (TFA)

originated from incomplete hydgrogenation of edible vegetable oils e.g. cakes, cookies, crackers, margarine, fried potatoes

3-MCPD

soybean extract that have been treated at high temperature with concentrated hydrocloric acid

Toxicant from food contact material

Phthlates

plastic bags, packaging materials, food container

Bisphenols

Protective coating of plastic bottles

Food Additives

Artificial sweeteners

Preservatives

Glutamate

List all the hazards (biological, chemical, physical) that might present in:

Satay Peanut sauce CCucumber & onions Rice cube