GY 302 Crystallography and Mineralogy

Supplementary Lecture Notes 2 Crystal Systems and Symmetry

	Crystal System	Axes	Angles between axes	Mineral examples
1	Cubic		-	Halite, Galena, Pyrite
2	Tetragonal			Zircon
3a	Hexagonal		-	Apatite
3b	Trigonal		-	Quartz, Calcite
4	Orthorhombic			Aragonite, Staurolite
5	Monoclinic		-	Gypsum, Orthoclase
6	Triclinic			Plagioclase

Symmetry explanations below are from http://www.cartage.org.lb

2-fold Rotation Axis - If an object appears identical after a rotation of 180° , that is twice in a 360° rotation, then it is said to have a 2-fold rotation axis (360/180 = 2).

Note that in these examples the axes we are referring to are imaginary lines that extend toward you perpendicular to the page or blackboard. A filled oval shape represents the point where the 2-fold rotation axis intersects the page.

3-fold Rotation Axis - Objects that repeat themselves upon rotation of 120° are said to have a 3-fold axis of rotational symmetry (360/120 = 3), and they will repeat 3 times in a 360° rotation. A filled triangle is used to symbolize the location of 3-fold rotation axis.

4-fold Rotation Axis - If an object repeats itself after 900 of rotation, it will repeat 4 times in a 3600 rotation, as illustrated previously. A filled square is used to symbolize the location of 4-fold axis of rotational symmetry.

6-fold Rotation Axis -If rotation of 60° about an axis causes the object to repeat itself, then it has 6-fold axis of rotational symmetry (360/60=6). A filled hexagon is used as the symbol for a 6-fold rotation axis.

2-fold Rotoinversion - The operation of 2-fold rotoinversion involves first rotating the object by 180 degrees then inverting it through an inversion center.

This operation is equivalent to having a mirror plane perpendicular to the 2-fold rotoinversion axis.

3-fold Rotoinversion - This involves rotating the object by 120° (360/3 = 120), and inverting through a center. A cube is good example of an object that possesses 3-fold rotoinversion axes.

4-fold Rotoinversion - This involves rotation of the object by 90° then inverting through a center.

Note that an object possessing a 4- fold rotoinversion axis will have two faces on top and two identical faces upside down on the bottom, if the axis is held in the vertical position.

6-fold Rotoinversion - involves rotating the object by 60° and inverting through a center. Note that this operation is identical to having the combination of a 2-fold rotation axis perpendicular to a mirror plane.

Diagrams below are from Ness, W. D., 2000. Introduction to Mineralogy. Oxford University Press, New York 442pp

