

SCHOOL OF CIVIL ENGINEERING ENGINEERING CAMPUS UNIVERSITI SAINS MALAYSIA 14300 NIBONG TEBAL PULAU PINANG

EAL 337 PAVEMENT ENGINEERING

SEMESTER I [SESSION 2021/2022]

ASSIGNMENT 3

During a site visit to a local quarry, you were taught aggregate composition, mix preparation and volumetric properties of a compacted Marshall sample. The aggregate composition in mix type asphaltic concrete AC10 incorporating hydrated lime as filler, is summarized in **Table 1**. Subsequently, asphalt mixtures were compacted and tested for volumetric properties and Marshall properties. The laboratory test results are shown in **Table 2**, while **Table 3** shows the Malaysian Public Works Department specification limits.

Table 1

Material	Percentage (%)	Specific Gravity (g/cm³)
Coarse Aggregate	46	2.66
Fine Aggregate	52	2.69
Filler (Hydrated Lime)	2	2.78
Bitumen	Variety	1.03

Table 2

Sample	Sample	Bitumen	Mass in	Mass in	Mass Saturated	Measured	Flow
No.	Height/	Content (%)	Air (g)	Water	Surface Dried	Stability	(mm)
	(mm)			(g)	(g)	(kN) -	
						Corrected	
1	58.7	4.5	1206.8	658.1	1176.2	7.2	2.0
2	63.5	5.5	1216.9	698.2	1211.9	13.9	2.8
3	66.1	6.5	1280.4	655.4	1199.6	8.3	3.9

Table 3

Property	Specification		
Stability, kN	≥8		
Flow, mm	<u>≤</u> 2 - 4		
Stiffness, kN/mm	>2kN/mm		
Air Voids, %	3 - 5		
Voids Filled with Bitumen, %	70 - 80		

- a) From the results shown in **Table 2** and **Table 3**, calculate the specific gravity of aggregate mixture. Specify any formula used in the calculate specific gravity of aggregate mixture.

 [6 Marks]
- b) Plot the following relationships. Calculate any additional parameters needed prior to plotting the relationship (i.e Mix voids filled with bitumen). State any formula used to compute the required data. [20 Marks]
 - Mix density versus bitumen content
 - Mix air voids versus bitumen content
 - Mix stability versus bitumen content
 - Flow versus bitumen content
 - Mix voids filled with bitumen versus bitumen content
- c) From the graphs plotted, determine the Optimum Bitumen Content (OBC) and stiffness value at OBC. Compare the value obtained with the JKR specifications and write down your comments.

 [9 Marks]